Oxford Physics Logo     The Oxford EDELWEISS, LUX-ZEPLIN and g−2 group University of Oxford Home Page  
   
 
Reseach Activities
SQUID Readout
 Electronics
 Cabling
Scintillators
 MPC Technique
 Results
SQUID Magnetometry
 Geophysics
3He Magnetometry
Oxrop
Scintillators for cryogenic rare-event search experiments

Within several years of research we have already identified a number of compounds that have good prospects for cryogenic applications. The main scintillation properties of investigated materials are listed in the table below. A comparison of the light output of studied materials at 295 and 9 K is displayed in the figure 1 to the right.

Crystal Density,

g/cm3
Emission peak, nm Decay time, micro seconds Light yield, (relative to CaWO4 @ 9K) Light yield, ph/MeV @ 295 K Resolution, % (137Cs)

300 K

9 K

300 K

9 K

CaWO41,2 6.06 420 9 390 55 100 160003 6.63
ZnWO41,2 7.87 490 24 120 60 120 110004 10.75 9.66
MgWO47,8 5.66 480 36 90 30 40 130007 9.17
CaMoO49 4.35 540 10 630 30 95 89009 10.310
CdMoO42 6.07 550 - 470 - 80    
Bi4Ge3O1211 7.13   0.43 138 45 150 690012 1012
Al2O3:Ti13 3.98 290
420
730
0.14
 
3
 
 
4
 
15
 
30
240013(0.20%)

750014(0.07%)
 
CaF215 3.18 280 1 930 15 60    
 
References:
1. Feasibility study of a ZnWO4 scintillator for exploiting materials signature in cryogenic WIMP Dark Matter searches, H. Kraus et al.,Physics Letters B 610 (2005) 37.
2. Cryogenic scintillators in searches for extremely rare events, V. B. Mikhailik and H. Kraus, J. Phys. D: Appl. Phys. 39 (2006) 1181.
3. Characterization of CaWO4 scintillator at room and liquid nitrogen temperatures, M. Moszyński et al., Nucl. Instr. Meth. A 553 (2005) 578 – 591.
4. ZnWO4 crystals as detectors for 2β decay and dark matter experiments, F. Danevich et al, Nucl. Instr. Meth. A 544 (2005) 553.
5. Scintillation Properties of Pure and Ca-doped ZnWO4 Crystals, F A Danevich et al., Phys. Stat. Sol. (a) 205 (2008) 335 – 339.
6. ZnWO4 scintillators for cryogenic dark matter experiments, H. Kraus et al., Nucl. Instr. and Methods A 600 (2009) 594.
7. Structure, luminescence and scintilation porperties of the MgWO4-MgMoO4 system, V.B. Mikhailik et al., Journal of Physics-Condensed Matter 20 (2008), 365219.
8. F. Danevich et.al., Nucl. Instr. Meth. Phys. Res. A (submitted).
9. Temperature dependence of CaMoO4 scintillation properties, V B Mikhailik et al., Nucl. Inst. Methods A 583 (2007) 350 – 355.
10. Development of CaMoO4 crystal scintillators for a double beta decay experiment with 100Mo, A.N. Annenkov et al., Nucl. Instr. Meth. A 584 (2008) 334
11. Scintillation studies of B14Ge3O12 (BGO) down to a temperature of 6K, J Gironnet et al. Nucl. Instr. and Methods A 594 (2008) 358.
12. Intrinsic energy resolution and light yield nonproportionality of BGO, M. Moszynski et al., IEEE Trans. Nucl. Sci. 51 (2004) 1074
13. Low-temperature spectroscopic and scintillation characterisation of Ti-doped Al2O3, V.B. Mikhailik et al., Nucl. Instrum. Meth. A 546 (2005) 523 – 534.
14. Quest and investigation of long wavelength scintillators, P.A. Rodnyi et al., Nucl. Instr. Meth. A 486 (2002) 244.
15. Scintillation Properties of Pure CaF2, V. B. Mikhailik et al., Nucl. Instr. Meth. A 566 (2006) 522 – 525.

 

Note references in italics are not authored by members of the Oxford group

   
Figure. 1 Comparison of light output of different scintillation materials suitable for cryogenic application
 

Figure 2. ZnWO4 scintillation element in the shape of hexagonal prism (base 40 mm, height 40 mm) produced by Institute for Single Crystals (Kharkiv, Ukraine)

 

 

 

Site © 2011, The University of Oxford Physics Department. Comments about this website: email   webmaster@physics.ox.ac.uk.
  physics, oxford, university, the university of oxford, conference, conferencing, admissions, undergraduates, jobs, astrophysics, condensed, matter, atmospheric, laser, atomic, particle, theory, theoretical, ocean, planet