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Standing waves 
Consider a string with 2 waves of equal amplitude moving in opposite directions 

tkxA

tkxAtkxAtxy





cossin2

)sin()sin(),(





i.e. has factorised into space and time-dependent parts.  This means every  
point on string is moving with a certain time-dependence (cosωt), but the 
amplitude of the motion is a function of the distance from the end of the string 



















T

tx
Atxy





 2
cos

2
sin2),(

or, if you prefer 
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An example –  
a string on two  
which two  
wavelengths  
are excited 

Stationary points 
are the nodes –  
occur every λ/2. 
Between these  
are the antinodes. 
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Standing waves 

t=0 

t=δt 
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Boundary condition that each end of a fixed string must be a node... 
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...means that only certain discrete frequencies – the modes – are available. 
These modes are multiples of the basic mode, which is the fundamental . 

with 

x=L x=0 

mode 4 
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Standing waves – violin string 

E string of a violin is to be tuned to  
a frequency of 640 Hz.  Its length 
and mass (from bridge to end) are 
33 cm and 0.125 g respectively. 
 

What tension is required? 
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Transverse waves in nature: EM radiation 

The most important example of waves in nature is  
electromagnetic radiation, i.e. light etc.  This will be 
properly covered in EM lectures.  Here is just a taster. 

James Clerk Maxwell 
1831-1879 

Maxwell’s equations in free space for electric 
field E, and magnetic inductance B 
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ε0 = permittivity of free space = 8.854 x 10-12 F/m  
μ0 = permeability of free space = 4π x 10-7 Hm-1 
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Transverse waves in nature: EM radiation 
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Maxwell’s equations in free space yield: 

which is the wave equation with                                               → the speed of light!   
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(equivalent expression  
  is obtainable for E) 
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Transverse waves in nature: EM radiation 

B-field 

E-field 

EM waves in vacuum: both E and B vectors oscillate transverse to the 
direction of propagation and, in phase, transverse to each other 
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Transverse vs longitudinal waves 

For coupled oscillators we considered both transverse and longitudinal  
excitations.  The same is true here – can certainly have longitudinal waves 

Some systems support only transverse waves, some only longitudinal, some both 

• Transverse only: stretched string, EM waves in vacuum... 
 

• Longitudinal only: sound waves in air – this because air has no elastic  
                                 resistance to change in shape, only to change in density 
 

• Both:  stretched spring,  crystal... 

Transverse waves have an important attribute not available to longitudinal waves: 
  

                                                      POLARISATION 
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Polarisation 
Transverse vibrations can be in one of two directions (or both) orthogonal to the 
direction of wave propagation.  We talk of two different directions of polarisation. 
 

(It can even be that wave velocities are different for the two polarisation states, 
 due to e.g. the different interatomic spacings in a crystal.)  

Some  possibilites for polarisation of E vector in EM wave travelling in z-direction: 
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Dispersion 
/Tc For our stretched string we found that the wave velocity is, 

 

i.e. depends only on properties of string and has no dependence on 
frequency (or wavelength) of wave.  But this is an idealised system! 

For most systems the velocity of a wave 
does have a dependence on ω and λ 

 

                              →DISPERSION 
 

One well known example is light in a prism. 
Light in a medium m with refractive index n 
Has a velocity cm, where                   . 
 
But the refractive index, and hence wave 
velocity, varies with wavelength.   Hence 
light is bent at different angles by prism according to wavelength. 

nccm /
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Dispersion – lumpy string revisited 
The stretched string has an idealised mass / unit length.   
But earlier we analysed normal modes of the lumpy string.  We found: 
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and                          ; also we have  nLn /2

Recall normal modes for N=5: 

Look at behaviour of ωn vs k (for n=1...N), recalling that wave speed=ω/k 
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Dispersion curve for lumpy string 

For a lumpy string with  
N=100 masses (other  
properties arbitrary) 
calculate ω and k for  
each normal mode 

Note also that there is a ‘cut-off’ frequency – a maximum frequency  
above which it is not possible to excite system/transmit waves –  
this is a property often found in a dispersive system.   

This is not linear!  Velocity of  
wave corresponding to each  
mode depends on 
ω (or k).   This is dispersion.   
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increasing n→ 

Saturates towards  
cut-off angular 
frequency of 2ω0 
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Information transfer & wave packets 
To transmit information it is necessary to modulate a wave.   
Consider the simplest case of turning a wave on and then off:   

For a certain range of (kx-ωt) this signal has displacement y=Asin(kx-ωt), 
outside this range the displacement y=0.    This is not a single wave, for 
which y=Asin(kx-ωt) would apply for all (kx-ωt)!  It is in fact a wave packet. 
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Wave packets – a toy example 
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by 2δω and 2δk in angular frequency  
and wave-number, respectively: 
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Not exactly a packet, more an infinite 
series of sausages – would need an 
infinite number of input waves to  
make a discrete wave packet 
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Modulation 
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A pure sine wave carries no information – to encode information for radio  
transmission need to modulate the wave.    General principle as follows:     

Signal, typically characterised 
by low frequency variation 

(e.g. voice: a few 100 Hz -1kHz) 

Carrier wave 
High frequency 

(e.g. ~ MHz) 

Modulated signal, which 
is transmitted,  received 
and then de-modulated 

Carrier signal 
is modulated 

Various options exist for the modulation strategy 



Modulation strategies 
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Pulse modulation 

Simply turn sine wave off and on,  e.g. morse code 

Amplitude modulation 

Modulate amplitude, e.g.  (Offset + signal(t) ) x sin [2π fcarrier t]  

Frequency modulation 

Encode information in modulation of frequency  (also phase modulation) 



Group velocity 
The velocity of the wave packet is known as the group velocity. 
In almost all cases this is the velocity at which information is transmitted. 
 
 

In a dispersive medium the group velocity is not the same as the velocity 
of the individual waves, which is known as the phase velocity (& in a dispersive  
medium the phase velocity, ω/k, varies with frequency & wavelength) 
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Consider our toy example: 
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or if considering light, & a medium with refractive index n, we have ncvp /















d

dn

nn

c
vg 1

Observe that                    !  ncvg /

Different expressions for the group velocity 
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Dispersion and the spreading  
of the wave packet 

Another consequence of dispersion is that a wave-packet will not retain its  
shape perfectly, but will spread out.  Can have consequences for signal detection 
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Group and phase velocities for lumpy string 

Calculate phase and group velocity for the lumpy string with N=100 
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Phase and group velocity ~ the same at first, but vg→0 as ω→2ω0 (cut-off) 

Dispersion 
curve 
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Waves in deep water 
Waves in water with λ > 2 cm (below which surface tension effects are  
important), but still small compared to water depth, have a dispersion relation 
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