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N coupled oscillators 
Consider flexible elastic string to which are attached N particles of  
mass m, each a distance l apart.  The string is fixed at each end.  Small  
transverse displacements are applied → transverse oscillations 
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N coupled oscillators: special cases 
Let’s first consider the special cases N=1 and N=2 
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N coupled oscillators: general case 
Now let’s try and find solution for a general value N 
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Displacement for mass p when oscillating in mode n and angular frequency:  

mlT /0 

Although the value of n can go beyond N, this just generates duplicate solutions, 
i.e. there are N normal modes in total. 

N coupled oscillators: the solution 

6 



N coupled oscillators: modes for N=5 
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Look at each mode for N=5, with snapshot taken at t=0 

Note how the displacement of every particle falls on a sine curve! 
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N coupled oscillators: N very large 
Let’s explore the scenario where N is very large, which starts to  
approximate case of a real, continuous, string  
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System of springs and N masses: 
longitudinal oscillations 
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Let up be displacement from equilibrium position of mass p 
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Stretched string 

Consider a segment of string of linear density ρ stretched under tension T 
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Stretched string and wave equation 
Will show that the displacements on a stretched string obey 
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which is the wave equation 

2

2

22

2 1

t

y

cx

y












T
c with 

11 



Jean-Baptiste le Rond d’Alembert 

• 1717-1783 
 
• Lived in Paris 
 
• Mathematician and physicist 
 
• Also a music theorist and co-editor 
  with Diderot of a famous encyclopaedia 
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d’Alembert solution of wave equation 
We will show how the wave equation can be solved to yield solutions of form:   

)()(),( ctxgctxftxy 

Here f and g are any functions of (x-ct) & (x+ct), determined by initial conditions. 
 

We will then interpret this solution. 
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Interpretation of D’Alembert solution 
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Focus on x=0 and consider situations at t=0 and t=Δt 

Wave moves to right with speed c 
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Interpretation of D’Alembert solution 

)0,0(y

y

x

),0( ty 

y

x

tc

)(),( ctxgtxy 

Focus on x=0 and consider situations at t=0 and t=Δt 

Wave moves to left with speed c 
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d’Alembert’s solution with boundary conditions 
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Example: rectangular wave  
of length 2a released from rest 
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Sinusoidal waves 

)()(),( ctxgctxftxy 

A very common functional  dependence for f and g... 

...is sinusoidal. In this case it is usual to write: 

)cos()cos(),( tkxBtkxAtxy  

or Asin(kx-ωt) ... etc  (choice doesn’t matter, unless  
we are comparing  one wave with another and  
then relative phases become important) 

with k and ω (and A  
and B) constants 

• speed of wave 
 

• frequency 
 

   where ω is angular frequency 
 

• wavelength 
   where k is the wave-number  
   (or wave-vector if also used to indicate direction of wave)  
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Notation choices 

)cos(),( tkxAtxy Sinusoidal solution 
(writing here, for  
 compactness, only the  
 forward-going solution) 

Using the relationships between k,ω, λ & c this can be expressed in many forms 

)](cos[),( ctxkAtxy 

Also note that sometimes it is convenient to write 
 

Changes nothing (for cosine, trivially so, & practically not even for sine function,  
as overall sign can be absorbed in constant) & still describes forward-going wave. 

)cos(),( kxtAtxy  

A very frequent approach is to use complex notation  (we already made use of 
this when analysing normal modes, and you will have seen it in circuit analysis)  

 )](exp[Re),( tkxiAtxy 

or                                                         if its important to pick out sine function. 
Note that often the ‘Re’ or ‘Im’ is implicit, and it gets omitted in discussion. 

 )](exp[Im),( tkxiAtxy 
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Phase differences 

)cos(),(1 tkxAtxy 

Often important to specify phase shifts.  Only meaningful to do so when we  
are comparing one wave to another. 

)cos(),(2   tkxAtxy

In this example wave 2 leads  
wave 1 by π/2, i.e. φ=-π/2 

Can be expressed with complex notation 

ωt 

wave 1 wave 2 

π/2 

kx=0 

 )](exp[Re),(2   tkxiAtxy

 )](exp[Re),(2 tkxiAtxy  )exp(|| iAA

Nicer still to subsume phase into amplitude 

with 
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