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Introduction

Two lectures to remind ourselves of what we learned last term

Will restrict discussion to the topics on the syllabus

Will re-state main relations/facts/principles you should know.

Most of these | will not re-derive (no time) — look back to last term’s notes.

Essential information contained in these slides, but some points will
be augmented by working through on board.

Will illustrate with some typical problems from recent prelims papers.

(No guarantee my answers are correct! If working through them we find
bugs | shall fix the online version of the slides)

These slides & HT material on http://www.physics.ox.ac.uk/users/wilkinsong



Normal modes



Normal modes - syllabus

According to the course handbook you should know about the following

Coupled undamped oscillations in systems with two degrees of
freedom. Normal frequencies, and amplitude ratios in normal
modes. General solution (for two coupled oscillators) as a super-
position of modes. Total energy, and individual mode energies.
Response to a sinusoidal driving term.

Let’s remind ourselves of the essentials, before looking at a few past problems



An illustrative example:
coupled pendula

VAVAAAVAAAAANAAAANANANANE
- Img ’ |mg
—> | >
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X

First thing to do is to m)'c'z—mg7+k(y—x)

write down the ) y
equations of motion: my = —mg7 —k(y—x)



Finding the normal modes

Recall there are two good ways to solve these problems:

1. The decoupling method

The equations are decoupled by finding the ‘mode (or normal)
coordinates’. If the system is symmetric (i.e. equal masses,
spring constants, length of pendula...) then a good bet will be
1
g, =—=(x+y)
L2

(the factor of 1/V2 is not necessary for
solving the problem, and is often omitted.

1 It’s there to make other expressions, i.e. those
4, = ﬁ(x =) for the energy, come out right)

In practice then one adds and subtracts the equations of motion.

If the system is not symmetric then the normal modes will in general be
more complicated. In that case | advise a second plan of attack...

2. The matrix method

I’ll remind you of this shortly.



Solving with decoupling method

So for the coupled pendula we add and subtract the equations of motion:

mjc'z—mg§+k(y—x) mjﬁz—mg%—k(y—x)

to obtain
. g . 2 8 k
.2 thw =< - _ 2 th @, == +2—
g, =-wiq, """ / q, =0, q, W [ m
g =Xty g, =X—Y
the solutions of which are clearly
q, = A cos(wt+@,) q, = A, cos(w,t +¢,)

where A, , & ¢, , are constants set by inital conditions



Coupled pendula —the normal modes

First normal mode: centre-of-mass motion

= A4 cos(mwt+¢) q=x+y O =

Y E 77

Second normal mode: relative motion

q, = A, cos(o,t+¢,) g, =x—Yy w; = §+2k

o L

This correlated and anti-correlated motion is given by the form of the normal
coordinates and is typical for the simple problems we will encounter.
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Coupled pendula: the general solution

General solution is a sum of the two normal modes

x = A cos(ot+¢)+ A, cos(a,t +¢,)
y=A cos(wt+¢)— A, cos(w,t+@,)

The constants A; ¢,, A, and ¢, are set by the initial conditions

For example ag

x0)=y0)=a ; H0)=y0)=0 *

gives

A=a ; 4,=0 ; ¢ =0

In this case only the 15t normal mode is excited. 7
(For other possibilities look back at HT lecture notes.) t




Solving with matrix method

mx = —mg§+k(y—x)

Y

my = —mg % ~k(y =)

Expecting an oscillatory solution
so let’s try substituting one in,
making use of complex notation

2 8k

We obtain: [ m
_k
m

=0

2
d__|_§_|_£
dt> [ m

_k
m

k
, _
dt? | m
bas X &Y are
Re e'”  complex
Y constants

eigenvector
equation
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Solving with matrix method

We have Non-trivial solution _
equation AY =0 requires matrix has = det[A] =0
of sort no inverse
k k
So here: —w+ 24D =
o here: I m " 0
k k
— —?+ 24 L
m m
AN of =
Elgen\{alue (_ o’ +§+_j:i_ — :
eqguation m m 6022 _8 .,k
[ m

Substitute these back into the eigenvector equ" to find the amplitude ratios,
i.e. the relationship between X and Y. Find X=Y and X=-Y, as before.
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lllustrate these methods with
a couple of past exam questions

We have reminded ourselves about:

Coupled undamped oscillations in systems with two degrees of
freedom. Normal frequencies, and amplitude ratios in normal
modes. General solution (for two coupled oscillators) as a super-
position of modes.|Total energy, and individual mode energies.
“Response to a sinusoidal driving term.

*TT 2008, Q11

Let’s apply these techniques to - TT 2011, Q8

12



Trinity Term 2009, Q11

11. Two masses 2m and m are connected between two fixed points A and B with
three identical massless springs, each of spring constant k. The masses 2m and m are
free to execute small oscillations along the line of the springs, with displacements from
their equilibrium positions of x1 and x9, respectively.

2m m
| Ly Ly
Show that the angular frequencies of the normal modes are given by
wi = i(g +1/3)
=7 2m ' 10]
Find the ratio of the displacements of the two masses for each normal mode. 4]

At time ¢ = 0, the masses are at rest and have displacements 11 = xg and x9 = 0.
Find the subsequent displacements as a function of time. [6]
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Trinity Term 2009, Q11

2mx, =—k(2x, — x,)

E ti f tion: .
guations of motion m¥, = —k(2x, —x,)

Different masses involved, so recommend matrix method.

yields —a)2+£ _k
Usual (Xl]:Re(leem eigenvector m 2m X — 0
ansatz | x, X, equation _k e +% X, 0
m m
o k(3 V3) [x] 1
which gives ®,” :;(EJFTJ 71 :_1+\B with the X,/X, amplitude
L2 s ratios obtained by

Xl
— | == into eigenvector equation
X,| 3 & ;

(3 3 - i substituting w? results back
and w° = —(———]
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Trinity Term 2009, Q11

So general solution is

X, = cos(w,t+¢, )+ cos(w t+¢@. )

A
1f J3-1

= A, cos(w,t+¢ )+ A cos(wt+¢ )

Use initial conditions to fix A, _and @, _. It is the requirement that the masses
start at rest that determines @, _ = 0, while the initial displacements fix A, _.

1
X, = *o cos(@, 1) + —— cos(a)t)}

IL+I 31

Ho [cos(a)_t) —cos(@,t )]

J3

X, =

15



Trinity Term 2011, Q8

8. Two particles of mass m and 2m are free to slide on a frictionless horizontal
circular wire of radius r. The particles are connected by two identical massless springs
of spring constant & and natural length 7, which also wind around the wire, as shown
in the figure.

(a) Write down the equations of motion for the displacements x; and x9 of the
two particles. 2]

(b) Find the frequencies of the normal modes of the system, and qualitatively
explain their values. 6]

(¢) Find the functional forms of the motions associated with each of the normal
modes, including the appropriate time dependence. 7]
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Trinity Term 2011, Q8

mx, = —2k(x, —x,)

Equations of motion: Ik, = —2k(x, —x,)

Different masses involved, so recommend matrix method.

yields g +% 2k
;J;;J:tlz (M]:Re()ﬂ}m eigenvector e " [Xl
X 2 equation Kk _r e X X,
m m

Solving this gives|@ =~/3k/m inthe case X, =-2X,

The other solution, with| X, = X, is @ = 0| This is non-oscillatory !

So have X = ACOS[(W)tJFq)] and | x, = B+vt
X, :—gcos[(\/m)t+cb] x, = B+vt

with A,B,® and v constants to be determined from initial conditions

17



Trinity Term 2011, Q8

(d) If, at time t = 0, the displacements and velocities of the two particles are
given by x1(0) = 7r/10, x9(0) = —7r/20, and 21(0) = 22(0) = 7wr/20 (where w is
the largest of the frequencies found in (b)), find the first time when the velocity of the
particle of mass 2m is zero. Write your answer in terms of w

—cos[(\/3k/ )|+ ”’”\/f
———cos[(\/3k/ )|+ ’”’\/g

i.e. anticorrelated oscillations superimposed upon spinning motion

3
Velocity of mass 2m is zero when |f = % 77[
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Other topics

Coupled undamped oscillations in systems with two degrees of
freedom. Normal frequencies, and amplitude ratios in normal
modes. General solution (for two coupled oscillators) as a super-

position of modes.|Total energy, and individual mode energies.
[Response to a sinusoidal driving term.

* Reminder about energy
* Driving term —TT2012, Q10
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Energy of system with normal modes

Energy will include kinetic and potential contributions, with each coordinate

featuring. So returning to the case of the two coupled pendula:

| : 1 k
U=—-mE+7y") + —m . (x* +y*)—kxy
2 2 [ m
This a bit opaque. How does it look in terms of normal coordinates?
1
Recall (here x=—=(¢,—q,) o g
with normalisation NP and b .
factors included): 1 2 8
y=—"=(4,+4,) ) =—+2—
J2 o P m
This gives a much more transparent expression, and without cross-terms:
energy in mode 1 energy in mode 2
[ — lmq'z—l—lma)zqz " lmq.z_l_lma)zqz
2 1 2 1 11 2 2 2 2 12

So total energy of system = sum of energies in each excited mode

20



Trinity Term 2012, Q10

10. Two beads of identical mass M are placed at the same distance L from two ends
of a string of total length 4L and negligible mass under uniform tension 7". Damping is
ignored. One extremity of the string, O, is attached to the wall, but the other extremity,
E. is harmonically driven by a small transverse displacement h(t) = hgcos(wt) (see
figure below).

h(t) = h, cos(wt)

(a) Calling the transverse displacements of the beads yi(t) and y2(t), derive the
equation of motion for each mass, M, as a function of the angular frequency. wg =

VT/(2ML) and he.

(b) Find the angular frequencies of the normal modes of oscillation associated
with this system.



Trinity Term 2012, Q10

Equations of motion:| ) =-3wy, + @y, with @, =T /2mL

%) :y1a)§ — 3w§y2 + 2(()3h(l‘)

These are inhomogeneous, due to presence of h(t) term. To find the
normal modes we must find the complementary functions,
i.e. solve homogenous case:

32 :_35‘)5)’1 + wg)@

%) :ylwg - 30)3)@

Symmetric system, so this is easily done by the decoupling method

oo

p=—2a)§p with p=y,+y,| and £j=—4a)§q with g =y, — ),

:>a)p=\/§a)0 =0, =20,




Trinity Term 2012, Q10

(c) Calculate the steady state amplitude of the displacement of each bead as a

function of the driving frequency w, hg and wy. What are the values of these amplitudes
when w = 07 [4]

(d) Describe the motion of the system when the driving angular frequency w =

V3en. 4
Finding steady state amplitude means finding the particular integral

¥, = 203, 120} - @) (4a} ~ )] | Re(e™)

—

¥, = 20y B0} - 0" (20} - )b} — )] | Refe™)

when w=0 ‘yl‘=h0/4 and \y2\=(3/4)ho

when o= \6@0

y, =—2h,Re(e”) and y, =0
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Waves

24



Waves - syllabus

According to the course handbook you should know about the following

Derivation of the one-dimensional wave equation and its applica-
tion to transverse waves on a stretched string. D’ Alembert’s solu-
tion. Sinusoidal solutions and their complex representation. Char-
acteristics of wave motion in one dimension: amplitude, phase,
frequency, wavelength, wavenumber, phase velocity. Energy in
a vibrating string. Travelling waves: energy. power, impedance,
reflection and transmission at a boundary. Superposition of two
waves of different frequencies: beats and elementary discussion of
construction of wave packets; qualitative discussion of dispersive
media; group velocity. Method of separation of variables for the
one-dimensional wave equation; separation constants. Modes of
a string with fixed end points (standing waves): superposition of
modes, energy as a sum of mode energies.

Let’s remind ourselves of the essentials, before looking at a few past problems
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Waves - syllabus

Focus first on the below topics

Derivation of the one-dimensional wave equation and its applica-
tion to transverse waves on a stretched string. D’ Alembert’s solu-
tion. Sinusoidal solutions and their complex representation. Char-
acteristics of wave motion in one dimension: amplitude, phase,
frequency, wavelength, wavenumber, phase velocity. Energy in
a vibrating string. Travelling waves: energy. power, impedance,

reflection and transmission at a boundary. Euperpnsitiﬂn of two
waves of different frequencies: beats and elementary discussion of
construction of wave packets; qualitative discussion of dispersive
media; group velocity. Method of separation of variables for the
one-dimensional wave equation; separation constants. Modes of
a string with fixed end points (standing waves): superposition of
modes, energy as a sum of mode energies.

and illustrate by looking at Long Vacation 2011, Q9



Waves on a stretched string

Consider a segment of string of linear density p stretched under tension T

T Key point — means that
NO+ 0 no net horizontal force
at first order, only vertical
0,00 ' force, and we can make
small approximations
such as sinég = 60

T =
' >
X X+ Ox
For full derivation see HT lecture 0%y (P 0y
notes or text book, e.g. French ' o2 7)o

This is the wave equation, 5 >
which (anticipating 0 )2/ - 12 0 g’ with C:F
solution) we can write Ox Ot P

27



d’Alembert solution of wave equation

82)/ 1 02)/ y is a function of x and t. u=x-—ct
= Define new variables so that V=x+ct
ox~ ¢ ot : - B
y is now a function of uand v

With chain rule 52)/ _ B
we can show Oudv =0 — y(u’v) o f(u) + g(v)

So general solution of wave equation is

v(x,t)=f(x—ct)+g(x+ct)

Here f and g are any functions of (x-ct) and (x+ct), determined by initial
conditions. A common scenario is that they are sinusoidal.

Note that| f (x —ct) describes forward-going wave and| with ¢ the (phase)
g(x+ct) describes a backwards-going one || Vvelocity of the wave

28




Sinusoidal waves

A very common functional dependence for fand g...

v(x,t)=f(x—ct)+g(x+ct)

...is sinusoidal. In this case it is usual to write:

with k and w (and A
y(x,t) = Acos(kx—ax)+ Bcos(kx+wt)| and B) constants

or Asin(kx-wt) ... etc (choice doesn’t matter, unless
we are comparing one wave with another and =~
then relative phases become important) <
*speed of wave |c=w/ k
* frequency f=1/T=w/2r
where w is angular frequency
*wavelength (A =27/k E
where k is the wave-number l:
(or wave-vector if also used to indicate direction of wave) e



Notation choices

(writing here, for
Sinusoidal solution  y(x,#) = Acos(kx—cat)  compactness, only the
forward-going solution)

Using the relationships between k,w, A & c this can be expressed in many forms
v(x,t) = Acos[k(x—ct)]

Also note that sometimes it is convenient to write  V(x,#) = A cos(ar — kx)

A very frequent approach is to use complex notation (we already made use of
this when analysing normal modes, and you will have seen it in circuit analysis)

y(x,t) = Re| dexp[i(kx— at)]]

or y(x,1) = Im[A exp[i(kx—a)t):] if it’s important to pick out sine function.
Note that often the ‘Re’ or ‘Im’ is implicit, and it gets omitted in discussion.
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Energy and impedance for
travelling wave on string

Energy stored in a mechanical wave

Integrate kinetic energy and potential
energy densities over an integer 5
number of wavelengths to show they PE density = v _ lT(a_yj
contribute equally and give dc 2 (ox

. dK 1 (Y
KEdensity=—=— p| =
T o 2‘{&)

1 1
Total energy in n wavelengths = E,OAza)znl Power flow = ETAza)k

Characteristic impedance

The characteristic impedance Z is defined as the applied driving force acting
in the y-direction divided by the velocity of the string in the y-direction

Tay h
F 7 A so wit Tk T
_ y: 6x == =
YT T Ty e =dsinte-any |77, = VTP
ot

(Note sign on driving force which ensures Z positive for forward wave!) 31



Long Vacation 2011, Q9

9. Two identical long strings are attached to a point mass M. The strings are
stretched along the r-axis and are under tension 7. The equilibrium position of the
mass 1s at the origin. The mass i1s now displaced slightly in the transverse direction vy
and subsequently released. Show that

%y dya Oy
M| S S o .
[ o2 ]rU [ Or  Ox L_O |

where vy and 9 represent displacements of the string at x < 0 and x > 0. respectively.
Show that the amplitude reflection coefficient for a wave incident on the mass is

—ip
1+ p

r =

92 N . . . .
where p = ”")T"f , k is the wavenumber 27 /A, and w is the angular frequency. What is

the transmission coefficient?

Sketch the variation of the phase change on reflection as a function of M for fixed

w and T

[10]

32
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Waves at boundaries

This question a good opportunity to remind ourselves what happens to
waves at boundaries, so let’s answer it in a more general way than is being
asked by first allowing strings to be different (e.g. different densities)

m—) M 0, —

P
*x%

_ x=0

So we must allow for reflected and transmitted waves. To satisfy boundary
conditions all waves must have same frequencies, but their velocity and
wave-vector will depend on which string they are on

Incident Re|Adexpli(awt —kx
[ xpLi( : )]] Transmitted Re A"exp[i(a)f—kzx)]]
Reflected Re[A' exp [i(at + klx)]]

Complex notation convenient for these problems. Pay attention to signs!
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Long Vacation 2011, Q9

Write down boundary conditions sin @, ~ tan 6, sin 6, ~ tan 6,
oy _
1. Equation of motion for mass tané) :a—l M tand, = "o

M Gt =(-T'sing —Tsin6,)|
ot 1 2 7x0
x=0 _
2
W Yior zT(%_%j
or | ox Ox )|,

2. Strings stay stuck to mass
y1(0,7) = y,(0,7)
Apply to expressions for incident, reflected and transmitted waves
(1)>  A"(k,T—mw’)=ik,TA—ik,TA
(2)-> A'=A+ A

34



Long Vacation 2011, Q9

Evaluater=A’/Aand t=A”/A

A" T(k —ky)—ime’ A 2k,T
A Tk +k)+io’m A Tk +k)+io'm

r

Specialising to case where strings are identical and so k,=k, =k gives

. o) .

—im@ —1 2kT 1 2

- — = p and = with p=ma)
2kT+ioo"m 1+ip

I/‘ — —
2kT+iw'm 1+ip 2kT

(Aside: one is often asked about transmitted a?d reflected energy.
So make sure you remember wave power = ETa)k(Amplitude)2 )

 m low, phase is —1t/2 <—— but this case is
slightly artificial,

as no reflection
in case m=0!

T -1
Phase of r= —— — tan" (p)
2 * m high, phase is -t

35



Waves - syllabus

Now let’s consider

Derivation of the one-dimensional wave equation and its applica-
tion to transverse waves on a stretched string. D Alembert’s solu-
tion. Sinusoidal solutions and their complex representation. Char-
acteristics of wave motion in one dimension: amplitude, phase,
frequency, wavelength, wavenumber, phase velocity. Energy in
a vibrating string. Travelling waves: energy. power, impedance,
reflection and transmission at a boundary.| Superposition of two
waves of different frequencies: beats and elementary discussion of
construction of wave packets; qualitative discussion of dispersive
media; group velocity. Method of separation of variables for the
one-dimensional wave equation; separation constants. Modes of
a string with fixed end points (standing waves): superposition of
modes, energy as a sum of mode energies.

with reference to questions: TT 2009, Q6; TT 2010, Q6; TT 2012, Q8
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Wave packets and group velocity

A single wave cannot transmit information. To do that we need a wave packet.
Any wave packet can be formed from a sum of single waves. Simplest example:

Sum together two waves which differ y, = Asin[(k+ )x — (@ + &))t]

by 26w and 26k in angular frequency B ,
and wave-number, respectively: Vo = Asm[(k - ﬂc)x - (a)— 550)1‘]

= y=y+y, =2Acos(dk x—owt)sin(kx— r)

Describes envelope — so envelope moves with velocity — and indeed

. do . . ®
Group velocity v, = T while phase velocity v, = T
37




Dispersion

Dispersion is when there is not a linear relationship between w and k.

Two consequences:

1. Phase velocity, w/k, depends on w and k.
e.g. Light in medium m has refractive index

n and velocity c,,, where ¢, =c/n
That’s why a prism splits light.

2. Group velocity # phase velocity

d
f v,=— and v, = it follows that
dv dv 2d
. p . p . C n
vg—vp+k— and vg—vp—ld—/1 and vg_;(H;ﬁj

(more important that you can derive these, rather than learn them!)



Dispersion question: TT 2009, Q6

6. The phase velocity v of light travelling through a gas at a wavelength A is given
by
2
c B
— = A+ — — DX 1
v2 * A2 (1)
where A, B,c and D are constants. Show that the group velocity v, is given by

3

vy = z'—Q(A —2D)?). 5]
\ do dwdA q %__2_72
W w  ard " T #

do_ o (4-2DF) ,
a2 2 e

and (1) > c’4n° =Aw’V +Bw’ — Do’ ' so

hence result
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Standing waves: TT 2010, Q6

6. A uniform string of length L which is fixed at both ends has a mass per unit
length ;1 and tension T'. Show that transverse standing waves along the string can arise
as a result of superposition of two sinusoidal waves travelling in opposite directions.
Derive an expression for the displacement of transverse standing waves ...

Sum right- and left-going travelling waves of same amplitude and frequency:

v(x,t) = Asin(kx—wt) + Asm(kx+ wt) factorised spatial &

=2 Asin kxcos wt temporal dependence

Standing waves: every point on the string moves with a certain time dependence
(coswt), but the amplitude depends on its position along the string (sinkx)

40



Standing waves: TT 2010, Q6

. and hence find

the frequencies of the normal modes. What is the tension in a violin string of length
325 mm and mass 125 mg, tuned to 660 Hz? [You may assume that the velocity of

travelling waves is given by v = +/T"/p ]

Ends of string being fixed determine boundary conditions: 1(0,¢) = y(L,¢) =0

angular

: T
y(x,t) =2Asinkxcosax =>k L=nmw and w=n|—2  frequency
L L of normal

modes

and putting in numbers, with n=1, gives T=71 N

41



Wave equation revisited —
solving by separation of variables

We have already solved the wave equation using the d’Alembert approach
0’y 1 0’y
ox> ¢’ ot
Can also be solved by looking for solutions which have the ‘separated’ form
y(x, 1) =X (x)T(2)

i.e. that factorise into functions that are separate functions of x and t.
This is just the situation that applies to standing waves !

X . iz set each side equal to some

X - T separation constant —k?

Thisyields X (x)= Acoskx+ Bsinkx and 7'(¢)= Dcosckt+ Esinckt
with A,B,D and E constants defined by initial conditions

42



Standing waves: TT 2012 Q8

8. An elastic, horizontal string with tension T and mass per unit length p is held
fixed at both ends * = 0 and + = L. At t = 0, the string is displaced transversally
along the y direction in such a way that:

g 2 3 ;
y(xr,0) = sin = — —51112:

L 3 L

(a) Calculate the total energy of the string at £ = 0.
(b) The string is now released and starts to oscillate. Derive the wave equation
agy(;r: t} . C‘E aﬂ.}y(I= t) —0
ot? dx? :

describing small amplitude transverse waves on the string, and a formula for the wave
speed c.

(e¢) Solve this wave equation to obtain the transverse displacement y(x,t) of the
string at time {.

(d) Do you think the string will ever go back to its original £ = 0 shape? If so, at
what time ¢ will it happen for the first time?

(e) Caleulate the kinetic energy associated with each standing wave found to be
a solution of the wave equation in part (c¢) as a function of time ¢.



Standing waves: TT 2012 Q8

Let’s rearrange question so we can discuss the relevant topics more clearly

8. An elastic, horizontal string with tension T and mass per unit length p is held

fixed at both ends + = 0 and + = L. At t = 0, the string is displaced transversally
along the y direction in such a way that:

.omr 2, 3mx
y(x,0) = sin — — o sin ——.
Going from general solution to specific solution through applying
initial conditions and monitoring subsequent evolution with time

(¢) Solve this wave equation to obtain the transverse displacement y(x,t) of the
string at time {.

(d) Do you think the string will ever go back to its original ¢ = 0 shape? If so, at
what time ¢ will it happen for the first time?

Energy of system

(a) Calculate the total energy of the string at ¢t = 0.

(e) Calculate the kinetic energy associated with each standing wave found to be
a solution of the wave equation in part (c) as a function of time ¢.



Standing waves: TT 2012 Q8

Know from separation of variables that a solution to wave equation is

y(x,t) =(Acos kx+ Bsin kx)(C cos kct + Dsin kct)

and we also have four boundary conditions:

1. Stringinitially at rest, i.e. 0y /0t =0 forallx = D=0
2. y(0t)=0= A=0

3. y(Lt)=0 = kL =nmx where n any integer. This is the eigenvalue egn.
and discretises k. Each value of n corresponds to a normal mode.

4. Form of initial displacement involves normal modes 1 and 3. From these
we fix coefficient of mode 1 to be 1 and 3 to be -2/3, and all others 0.

. TX mct 2 . 3mx 3ct
hence y(x,t) =sin— cos ——sin COS

L L 3 L L

This first returns to initial displacement when| ¢ =2L/c
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Energy of standing waves

Normal mode n for our string, with given boundary conditions:

. N nrct
v, (x,t)=F, smTcos

L
Calculate kinetic energy, K,, and potential energy, U,, for each mode
L 2 L 2
1 (0O 1 (0
K :f_p(ﬁj i Un:I_T(ﬁj i
0 2 ot 02 \ Ox
LE 0 | . T r
Evaluate and sum En :Kn+Un :'O n D with W, = n\/:_
4 p L
What about the case when several normal modes are excited (as in question)?
% Note that all cross-terms i.e. all these terms are zero
E= ZEn have vanished due to the jsin P 0 ™ A with = m
n=1 orthogonality of sines o L L

So total energy is weighted sum of all the excited normal modes

46



Standing waves: TT 2012 Q8

(a) Calculate the total energy of the string at ¢t = 0. [5]

(e) Calculate the kinetic energy associated with each standing wave found to be
a solution of the wave equation in part (c¢) as a function of time ¢. [4]

Initial energy of string is all in PE

U(t=0) = jz (@(t_o)jdx :>U(t:O):5T—7T

) O 4L
This result makes o0 TF 0
sense as it equals E = ZEn and E = pLL, O,
total energy of system n=1 4

as calculated from

Kinetic energy of each standing wave, i.e. kinetic energy of each mode

where A_ is the amplitude
coefficient for mode n
(here A,=1 and A,=-2/3
and others =0)

, nct

1 (o ’
Kn:_ofap( ”jdx =K, =4, 4L(n7rc) sin
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