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Introduction 
Two lectures to remind ourselves of what we learned last term 
 
Will restrict discussion to the topics on the syllabus 
 
Will re-state main relations/facts/principles you should know. 
 
Most of these I will not re-derive (no time) – look back to last term’s notes. 
 
Essential information contained in these slides, but some points will 
be augmented by working through on board. 
 
Will illustrate with some typical problems from recent prelims papers. 
(No guarantee my answers are correct!  If working through them we find 
bugs I shall fix the online version of the slides) 
 

These slides & HT material on http://www.physics.ox.ac.uk/users/wilkinsong 
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Normal modes 
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Normal modes - syllabus 

According to the course handbook you should know about the following 

Let’s remind ourselves of the essentials, before looking at a few past problems 



An illustrative example: 
coupled pendula 
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First thing to do is to 
write down the 
equations of motion: 
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Finding the normal modes 
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Recall there are two good ways to solve these problems: 

1. The decoupling method 

The equations are decoupled by finding the ‘mode (or normal)  
coordinates’.   If the system is symmetric (i.e. equal masses, 
spring constants, length of pendula...) then a good bet will be 
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 (the factor of 1/√2 is not necessary for 
 solving the problem, and is often omitted. 
 It’s there to make other expressions, i.e. those 
 for the energy, come out right) 

In practice then one adds and subtracts the equations of motion. 
 

If the system is not symmetric then the normal modes will in general be  
more complicated.  In that case I advise a second plan of attack... 

2.  The matrix method 

I’ll remind you of this shortly. 



Solving with decoupling method 
So for the coupled pendula we add and subtract the equations of motion: 
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where A1,2 & ϕ1,2 are constants set by inital conditions  
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Coupled pendula – the normal modes 
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First normal mode: centre-of-mass motion 

Second normal mode: relative motion 
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This correlated and anti-correlated motion is given by the form of the normal 
coordinates and is typical for the simple problems we will encounter. 



Coupled pendula: the general solution 
General solution is a sum of the two normal modes 
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In this case only the 1st normal mode is excited. 
(For other possibilities look back at HT lecture notes.) 



Solving with matrix method 
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Expecting an oscillatory solution, 
so let’s try substituting one in,  
making use of complex notation 

We obtain: 
eigenvector  

equation 

X & Y are  
complex 
constants 
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Solving with matrix method 
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We have  
equation  
of sort 

Non-trivial solution 
requires matrix has 
no inverse 

Eigenvalue  
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Substitute these back into the eigenvector equn  to find the amplitude ratios, 
i.e. the relationship between X and Y.  Find X=Y and X=-Y, as before.  



Illustrate these methods with 
a couple of past exam questions 
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• TT 2008, Q11 
• TT 2011, Q8 

We have reminded ourselves about: 

Let’s apply these techniques to 



Trinity Term 2009, Q11 
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Trinity Term 2009, Q11 
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Trinity Term 2009, Q11 

So general solution is 
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Trinity Term 2011, Q8 
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Trinity Term 2011, Q8 
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Solving  this gives                            in the case                         mk /3 21 2XX 
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Trinity Term 2011, Q8 
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Other topics 
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• Reminder about energy 
• Driving term – TT2012, Q10 



Energy of system with normal modes 
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This gives a much more transparent expression, and without cross-terms: 

So total energy of system = sum of energies in each excited mode 
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Energy will include kinetic and potential contributions, with each coordinate 
featuring.  So returning to the case of the two coupled pendula: 
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Trinity Term 2012, Q10 
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Equations of motion: 

Trinity Term 2012, Q10 
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These are inhomogeneous, due to presence of h(t) term.  To find  the 
normal modes we must find  the complementary functions,  
i.e. solve homogenous case: 
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Trinity Term 2012, Q10 

Finding steady state amplitude means finding the particular integral 
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Waves  

24 
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Waves - syllabus 

According to the course handbook you should know about the following 

Let’s remind ourselves of the essentials, before looking at a few past problems 
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Waves - syllabus 

Focus first on the below topics 

and illustrate by looking at Long Vacation 2011, Q9 



Waves on a stretched string 
Consider a segment of string of linear density ρ stretched under tension T 
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Key point – means that 
no net horizontal force 
at first order, only vertical 
force, and we can make  
approximations 
such as sinδθ ≈ δθ 

For full derivation see HT lecture 
notes or text book, e.g. French 
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This is the wave equation, 
which (anticipating  
solution) we can write 

with 



d’Alembert solution of wave equation 
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So general solution of wave equation is 

Here f and g are any functions of (x-ct) and (x+ct), determined by initial  
conditions.   A common scenario is that they are sinusoidal. 

Note that                       describes forward-going wave and   )( ctxf 

)( ctxg  describes a backwards-going one ! 

with c the (phase)  
velocity of the wave 



Sinusoidal waves 

)()(),( ctxgctxftxy 

A very common functional  dependence for f and g... 

...is sinusoidal. In this case it is usual to write: 

)cos()cos(),( tkxBtkxAtxy  

or Asin(kx-ωt) ... etc  (choice doesn’t matter, unless  
we are comparing  one wave with another and  
then relative phases become important) 

with k and ω (and A  
and B) constants 

• speed of wave 
 

• frequency 
 

   where ω is angular frequency 
 

• wavelength 
   where k is the wave-number  
   (or wave-vector if also used to indicate direction of wave)  
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Notation choices 

)cos(),( tkxAtxy Sinusoidal solution 
(writing here, for  
 compactness, only the  
 forward-going solution) 

Using the relationships between k,ω, λ & c this can be expressed in many forms 
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Also note that sometimes it is convenient to write 
 

)cos(),( kxtAtxy  

A very frequent approach is to use complex notation  (we already made use of 
this when analysing normal modes, and you will have seen it in circuit analysis)  

 )](exp[Re),( tkxiAtxy 

or                                                         if it’s important to pick out sine function. 
Note that often the ‘Re’ or ‘Im’ is implicit, and it gets omitted in discussion. 
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Energy and impedance for  
travelling wave on string 

31 

Energy stored in a mechanical wave 

Integrate kinetic energy and potential  
energy densities over an integer 
number of wavelengths to show they 
contribute equally and give  
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The characteristic impedance Z is defined as the applied driving force acting  
in the y-direction divided by the velocity of the string in the y-direction 

Characteristic impedance 

(Note sign on driving force which ensures Z positive for forward wave!) 
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Long Vacation 2011, Q9 
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Waves at boundaries 
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This question a good opportunity to remind ourselves what happens to  
waves at boundaries, so let’s answer it in a more general way than is being  
asked by first allowing strings to be different (e.g. different densities) 

x=0 

ρ1 

ρ2 

x→ 

M 

So we must allow for reflected and transmitted waves. To satisfy boundary 
conditions all waves must have same frequencies, but their velocity and 
wave-vector will depend on which string they are on 

 )](exp[Re 1xktiA 

 )](exp['Re 1xktiA 
 )](exp[''Re 2xktiA 

Incident 

Reflected 
Transmitted 

Complex notation convenient for these problems. Pay attention to signs! 



34 

Long Vacation 2011, Q9 
Write down boundary conditions 
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Long Vacation 2011, Q9 

Evaluate r ≡ A’/A and t ≡ A’’/A 
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(Aside: one is often asked about transmitted and reflected energy. 
 

  So make sure you remember wave power                                         )  2)Amplitude(
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Phase of r =  )(tan
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 • m low, phase is –π/2 

• m high, phase is -π 

  but this case is 
  slightly artificial,  
  as no reflection 
  in case m=0! 
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Waves - syllabus 
Now let’s consider  

with reference to questions: TT 2009, Q6; TT 2010, Q6; TT 2012, Q8 



Wave packets and group velocity 
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A single wave cannot transmit information.  To do that we need a wave packet. 
Any wave packet can be formed from a sum of single waves.  Simplest example: 

Sum together two waves which differ  
by 2δω and 2δk in angular frequency  
and wave-number, respectively: 
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Describes envelope – so envelope moves with velocity            and indeed   
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Group velocity                      while phase velocity        
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Dispersion 
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Dispersion is when there is not a linear relationship between ω and k. 

Two consequences: 

1. Phase velocity, ω/k, depends on ω and k.   
      e.g. Light in medium m has refractive index  
      n and velocity cm, where 
 

      That’s why a prism splits light. 
 

2.   Group velocity ≠ phase velocity 
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(more important that you can derive these, rather than learn them!) 



Dispersion question: TT 2009, Q6 
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(1) 
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hence result 



Standing waves: TT 2010, Q6 
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0x Lx 

tkxA

tkxAtkxAtxy





cossin2

)sin()sin(),(





Sum right- and left-going travelling waves of same amplitude and frequency: 

Standing waves: every point on the string moves with a certain time dependence  
(cosωt), but the amplitude depends on its position along the string (sinkx) 

factorised spatial  & 
temporal dependence 

... 
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Standing waves: TT 2010, Q6 
... 

0x Lx 

Ends of string being fixed determine boundary conditions: 0),(),0(  tLyty

angular  
frequency 
of normal 
modes 
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and putting in numbers, with n=1, gives T=71 N 



Wave equation revisited –  
solving by separation of variables 
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We have already solved the wave equation using the d’Alembert approach 

Can also be solved by looking for solutions which have the ‘separated’ form  

)()(),( tTxXtxy 

i.e. that factorise into functions that are separate functions of x and t. 
This is just the situation that applies to standing waves !  

T
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set each side equal to some  
separation constant –k2 

kxBkxAxX sincos)(  cktEcktDtT sincos)( 

with A,B,D and E constants defined by initial conditions 

This yields                                                      and 



Standing waves: TT 2012 Q8 
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Standing waves: TT 2012 Q8 
Let’s rearrange question so we can discuss the relevant topics more clearly 

Going from general solution to specific solution through applying  
initial conditions and monitoring  subsequent evolution with time 

Energy of system 
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Standing waves: TT 2012 Q8 
Know from separation of variables that a solution to wave equation is 

)sincos)(sincos(),( kctDkctCkxBkxAtxy 

and we also have four boundary conditions: 

1. String initially at rest, i.e.                      for all x 
 

2.  y(0,t)=0 
 

3.  y(L,t)=0                        where n any integer.  This is the eigenvalue eqn.  
         and discretises k.  Each value of n corresponds to a normal mode. 
 

4. Form of initial displacement involves normal modes 1 and 3.  From these 
        we fix coefficient of mode 1 to be 1 and 3 to be -2/3, and all others 0. 
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This first returns to initial displacement when  cLt /2



Energy of standing waves 
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Normal mode n for our string, with given boundary conditions: 
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Calculate kinetic energy, Kn, and potential energy, Un, for each mode 
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What about the case when several normal modes are excited (as in question)? 
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Note that all cross-terms 
have vanished due to the 
orthogonality of sines 
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i.e. all these terms are zero 

So total energy is weighted sum of all the excited normal modes 
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Standing waves: TT 2012 Q8 

x
x

ty
TtU

L

d
)0(

2

1
)0(

0

2

 













Initial energy of string is all in PE 
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This result makes 
sense as it equals 
total energy of system 
as calculated from 
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Kinetic energy of each standing wave, i.e. kinetic energy of each mode 
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where An is the amplitude  
coefficient for mode n  
(here A1=1 and A3=-2/3  
and others =0) 


