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Practical details 

12 lectures, split roughly 1:2 between normal modes and waves 

Notes will be handed out every 1-2 weeks.   These are NOT complete, 
so you will have to pay attention and follow what I say and write on board! 
 

In particular, the symbol           indicates that important information is missing 
from notes, which you are advised to add yourself during lectures. 
Missing material added in this version of slides – hence this symbol is absent. 
 

(Unintentional) mistakes may well feature – there are prizes for spotting these!  

Three sets of problem sheets will be distributed.  These are inherited from 
previous lecturers of this course – many thanks to them. 

Material will be posted on http://www.physics.ox.ac.uk/users/wilkinsong 
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Text books 

Many excellent books dedicated to oscillations and waves.   
Here are three particularly good examples: 

• ‘Vibration and waves’, A.P. French, MIT Introductory Physics Series 
 

• ‘Vibration and waves in physics’, I.G. Main, Cambridge University Press 
 

• ‘Waves’, C.A. Coulson and A. Jeffrey, Longman Mathematical Texts 
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Vibrations and waves in physics 
Understanding of both oscillating systems and also wave behaviour is 
essential for an enormous range of topics across all areas of physics. 
 

Some high profile examples: 

Erwin 
Schrodinger 

James Clerk 
Maxwell 

Ed Witten 

String & M-theory: 
all ‘fundamental’ particles 
are in fact normal modes of oscillating  
strings in higher dimensional space 
(caution: as yet no experimental evidence!)  

Electromagnetic 
radiation & waves 

Wave mechanics 
in quantum theory 
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Normal modes 



Normal modes - introduction 
You are familiar with oscillation properties of simple systems with one degree 
of freedom, e.g. simple pendulum.  They have a single resonant frequency. 
 

We will here consider systems with more than one degree of freedom (d.o.f.), 
specifically 2 d.o.f.  (and in one dimension),  but we will later generalise to  
N d.o.f. when we make the transition to discussing wave motion in  
continuous media.  We will find: 

A normal mode of an oscillating system is a pattern of  oscillation in which all 
parts of system move with the same frequency and with a fixed phase relation 

We will look at a variety of example systems 
 

 
 

We will explore techniques to find the normal modes, see the dependence 
on the initial conditions and look at the energies of these systems .  We will 
consider both free motion and motion under an external driving force. 

e.g. coupled pendula, spring mass systems, double pendula... 
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We can learn much about normal modes by 
analysing simple system of two coupled-pendula. 
We will look at the following: 
 
1. Solving with decoupling method 
2. Mode, or normal coordinates 
3. The general solution 
4. Different initial conditions 
5. Energy of system 
6. Solving with matrix method 
 

Coupled pendula 
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Coupled pendula 
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Solving with decoupling method 
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These are coupled equations, in that both involve the two unknown  
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Solving with decoupling method 
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Coupled pendula – the normal modes 
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First normal mode: centre-of-mass motion 

Second normal mode: relative motion 
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Mode, or normal, coordinates 
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This means that the vector defined by (q1,q2) has same length as that defined  
by (x,y), i.e. q1

2 + q2
2 = x2 + y2.  This factor changes none of results we obtained. 

The variables q1 and q2 are called the mode, or normal, coordinates 
 
In any normal mode only one of these coordinates is active at any one 
time  (i.e. either q1 is vibrating harmonically and q2 is zero or vice versa) 
 
In fact it is more common to define the mode coordinates with a  
normalising factor in front  (in this case          ) 2/1
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Coupled pendula: the general solution 
General solution is a sum of the two normal modes 
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Coupled pendula: different initial conditions  
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Coupled pendula: different initial conditions  
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‘Beats’ – energy is being transferred between pendula 
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Coupled pendula: different initial conditions  

In case it is not obvious  
how we obtain form of  
expressions on previous page 

Start with 

Then 

which is what we want 



Energy of coupled pendula  
Let’s calculate total energy of system, U = T (KE) + V (PE) 

Kinetic energy 
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Energy of coupled pendula  
Potential energy 
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as before 

18 



Energy of coupled pendula 
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This a bit opaque.  How does it look in terms of normal coordinates?  
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So total energy of system = sum of energies in each mode 

energy in mode 1 energy in mode 2 
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Solving with matrix method 
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Expecting an oscillatory solution, 
so let’s try substituting one in,  
making use of complex notation 

We obtain: 
eigenvector  

equation 

X & Y are  
complex 
constants 
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Solving with matrix method 
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We have an homogeneous matrix equation of the sort 0A

The non-trivial solution requires the matrix is singular, i.e. has no inverse 

0]det[  A

0
2

2







m

k

l

g

m

k
m

k

m

k

l

g




So here: 

eigenvector  
equation 
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Solving with matrix method 
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eigenvalue  
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Substitute back into eigenvector equation to learn 

• when ω=ω1 then X=Y,  call it 
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Same normal modes & frequencies as before! 
22 



Let’s now see if we can solve in the case when  
the pendula have different lengths 
 
1. Solving with matrix method 
2. A specific solution 
 

Unequal coupled pendula 
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Unequal coupled pendula 
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Unequal coupled pendula 
Attack problem with matrix method: 
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Try 

and so we must 
find solutions  of  
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Unequal coupled pendula 
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Unequal coupled pendula 
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solutions X/Y=+1 and -1.   It is also interesting to note that one can show 
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and so  
we define 
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which can be written ‘Beats’ solution as before, but now  
with r< 1 there is incomplete transfer  
of energy between pendula 

General solution 

Unequal coupled pendula: a specific solution 
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Diagrammatic representation of normal modes 
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e.g. = tan-1r  in case  
of unequal 
coupled pendula  
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two completely 
uncoupled 
pendula  

coupled 
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pendula  

coupled 
non-identical 
pendula  

Some examples: 
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Now we will consider a horizontal system.  Same 
analysis methods will apply as before. 
 
1. Solving with decoupling or matrix method 
2. Energy of system 
3. A specific solution 
 
And after this we will consider a vertical  
spring-mass system 
 

Spring-mass systems 
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Horizontal spring-mass system 
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m m

Consider two masses moving without friction, between three springs, 
two with spring constants αk, one with spring constant k 

Equations of motion: 
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Solutions of horizontal spring-mass system 

Solve by decoupling method.  Write down normal coordinates (here p & q): 

Equations of motion: 
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Gives normal  
frequencies of: 

Motion of two modes is ‘centre-of-mass’ and ‘relative’ as before 

which 
means 
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Cross-checking with matrix method 
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Write equations of motion as  
homogenous matrix equation 

Substitute in the  
below trial solution 

Demand that the resulting operator  
matrix  is singular, i.e. Det{matrix}=0 

Hence get eigenvalue equation 

We obtain same 
solutions as before 

with 
YX 

YX 

or 
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Energy of horizontal spring-mass system 
Let’s evaluate total energy, U=K+V, of system 

)(
2

1

)(
2

1

22

2

2

2

1

qpm

uumK









2222

22

2

2

2

12

2

1

2

1

2

1

)2(
2

1

2

1
2

1
)(

2

1

2

1

qmpm

kqkp

kuuukkuV

qp 




























 222222

2

1

2

1

2

1

2

1
qmqmpmpmU qp  

Kinetic energy 

Potential energy 

Again, the sum of energies of each normal mode! 

energy in mode 1 energy in mode 2 
Total energy 
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A specific solution for  
horizontal spring-mass system 

General solution is a sum of the two normal modes 
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Both normal modes excited.  The ‘beats’ solution. 
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Vertical spring-mass system 

x and y are displacements  
from equilibrium positions 
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• Find the normal frequencies  
  of the system 
 

• Find the ratio of the amplitudes 
  for each normal mode 
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Solving with matrix method 
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Write equations of motion as  
homogenous matrix equation 

Substitute in the  
below trial solution 

Demand that the resulting operator  
matrix  is singular, i.e. Det{matrix}=0 Hence get eigenvalue equation 

From this we obtain the  
normal frequencies 
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Normal modes of vertical spring-mass system 

Normal mode 1 
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eigenvector  equation 
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Now we return to our friend the coupled pendula 
system and analyse it in the case that the oscillations 
are driven by an external force, and also allow for  
a damping factor. 
 
1. Finding complementary function 
2. Finding particular integral 
 
and finally exercise the same formalism on 
 
3. Horizontal spring mass system 
 

Coupled oscillators with driving terms 
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Both pendula experience a retarding force of γ x velocity 
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Damped driven coupled pendula 
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Damped driven coupled pendula 

Let’s arrange equations of motion in form whatever
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Contrary to before, this equation is inhomogeneous, in that RHS≠0. 
To solve it we need to find both the complementary function (CF), which 
is solution to the homogeneous equivalent, and the particular integral (PI) 
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Damped driven coupled pendula: finding CF 

To find CF write down homogenous equation and solve as previously 
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Damped driven coupled pendula: finding CF 

To find CF write down homogenous equation and solve as previously 
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equations 

and 

with 
solutions 

where 

which are 
the results 
from the  
undamped 
scenario 

43 (note, no physical difference between      variants.  Just use + from now on.) 



Damped driven coupled pendula: finding CF 
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Substitute eigenvalues into the below: 

to deduce one mode has X=Y, & the other X=-Y.  Since  )exp(Re 2,1 ti
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We get the CF: 

Note the exponential decay factor. 
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Finding CF with decoupling method 
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The equations of motion 

can be decoupled with the normal coordinates 

to yield the 2nd order homogeneous differential equations 
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that can be solved through trial solution q=Re( e iωt) to give same results 
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Damped driven coupled pendula: finding PI 

We have the CF.  Now we need to find the PI, i.e. a solution to the full equation 
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Try this ansatz which means solving the following 
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Damped driven coupled pendula: finding PI 

We have matrix equation of the sort:  MU=V 
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Damped driven coupled pendula: finding PI 
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Damped driven coupled pendula: finding PI 
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Damped driven coupled pendula: finding PI 
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Finding PI with decoupling method 
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Same procedure for (2) gives entirely analogous expression for q2. 
From these same expressions are obtained for x and y as before. 
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Hence 
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Damped driven coupled pendula: full solution 

Solution = CF + PI 
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The CF part is the ‘transient solution’ determined by the initial conditions; 
the PI part is the ‘steady state solution’ determined by the driving force. 
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Horizontal spring-mass system 
with driving term 

Equations of motion: 
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Consider two masses moving without friction, with two springs of spring  
constants 2k and k respectively, connected to wall which is driven 
by an external force to have time-dependent displacement 
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Horizontal spring-mass system 
with driving term – find the CF 

Write down the homogeneous case  
and find CF using matrix method 
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Requiring determinant = 0 yields  

Substitute back in to eigenvector equn                                                   and 
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We have the CF.  Now we  
need to find the PI, i.e.  
a solution to the full equation 
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Try ansatz 
which  
means  
solving 

Horizontal spring-mass system 
with driving term – find the PI 
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Horizontal spring-mass system 
with driving term – full solution 

Solution = CF + PI 
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