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Practical details

12 lectures, split roughly 1:2 between normal modes and waves

Notes will be handed out every 1-2 weeks. These are NOT complete,
so you will have to pay attention and follow what | say and write on board!

In particular, the symbol * indicates that important information is missing
from notes, which you are advised to add yourself during lectures.
Missing material added in this version of slides — hence this symbol is absent.

(Unintentional) mistakes may well feature — there are prizes for spotting these!

Three sets of problem sheets will be distributed. These are inherited from
previous lecturers of this course — many thanks to them.

Material will be posted on http://www.physics.ox.ac.uk/users/wilkinsong



Text books

Many excellent books dedicated to oscillations and waves.
Here are three particularly good examples:

* ‘Vibration and waves’, A.P. French, MIT Introductory Physics Series
* ‘Vibration and waves in physics’, I.G. Main, Cambridge University Press

* ‘Waves’, C.A. Coulson and A. Jeffrey, Longman Mathematical Texts



Vibrations and waves in physics

Understanding of both oscillating systems and also wave behaviour is
essential for an enormous range of topics across all areas of physics.

Some high profile examples:

Wave mechanics

in quantum theory
Electromagnetic

radiation & waves

Erwin
Schrodinger

James Clerk
Maxwell

String & M-theory:

all fundamental’ particles

are in fact normal modes of oscillating
strings in higher dimensional space
(caution: as yet no experimental evidence!)

Ed Witten
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Normal modes



Normal modes - introduction

You are familiar with oscillation properties of simple systems with one degree
of freedom, e.g. simple pendulum. They have a single resonant frequency.

We will here consider systems with more than one degree of freedom (d.o.f.),
specifically 2 d.o.f. (and in one dimension), but we will later generalise to

N d.o.f. when we make the transition to discussing wave motion in
continuous media. We will find:

A normal mode of an oscillating system is a pattern of oscillation in which all
parts of system move with the same frequency and with a fixed phase relation

We will look at a variety of example systems

e.g. coupled pendula, spring mass systems, double pendula...

We will explore techniques to find the normal modes, see the dependence
on the initial conditions and look at the energies of these systems . We will
consider both free motion and motion under an external driving force.




Coupled pendula

We can learn much about normal modes by
analysing simple system of two coupled-pendula.
We will look at the following:

1. Solving with decoupling method
2. Mode, or normal coordinates

3. The general solution

4. Different initial conditions

5. Energy of system

6. Solving with matrix method



Coupled pendula

] |
0
0. YAV
\F k F
; AN
- Img i
N
X Y

mx = —mg§+k(y—x)

Equations of motion:

mj ==mg - ~k(y=x)



Solving with decoupling method

Equations of motion: X
mx = —mg7+k(y—x) (1)

mﬁ—mg%—k(y—x) 2)

These are coupled equations, in that both involve the two unknown
functions. Lets look for a way to decouple them to facilitate solving.

Adding (1) and (2):
m(x+y)= —m%(x+y)

This is looking familiar... lets define ¢, =X+ ) then

ql — —a)lqu with 0)12 =§

Ah ha! SHM with q, = A cos(wt+ @)

where A, & ¢, are constants set by boundary conditions



Solving with decoupling method

Equations of motion: X

mx = —mg7+k(y—x) (1)
. y
my =-—mg = —k(y—x) (2)
To get other solution subtract (2) from (1):
. k
m(x—y>=—m(§+2—j<x—y> (4)
m

Define g, =x—y toyield

. k
q, :—a)fqz with 0)22 =§+2—
[ m

which has solution

q, = A, cos(w,t + @, )
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Coupled pendula —the normal modes

First normal mode: centre-of-mass motion

= A cos(wt+¢) q=x+Yy 2—§

K E T 7

Second normal mode: relative motion

k
=A,cos(wt+¢,) G, =x—y a)2:§+2

U m



Mode, or normal, coordinates

The variables g, and g, are called the mode, or normal, coordinates

In any normal mode only one of these coordinates is active at any one
time (i.e. either g, is vibrating harmonically and g, is zero or vice versa)

In fact it is more common to define the mode coordinates with a
normalising factor in front (in this case1/+2 )

pm koo
L
Q2=\/§(x y)

This means that the vector defined by (gq,,g,) has same length as that defined
by (x,y), i.e. g2 + q,? = x* + y2. This factor changes none of results we obtained.

12



Coupled pendula: the general solution

General solution is a sum of the two normal modes

x = A cos(ot+¢)+ A, cos(a,t +¢,)
y=A cos(wt+¢)— A, cos(w,t+@,)

The constants A; ¢,, A, and ¢, are set by the initial
For example
x(0)=y0)=a ; x(0)=3(0)=0
gives
4=a ; 4,=0; ¢=0

In this case only the 15t normal mode is excited

conditions

X |




Coupled pendula: different initial conditions

Another example... 14

The following initial conditions

MO =y0)=0; fO=—v; HO=v |

yield

A4=0; $=1/2 A=-"" vl

which corresponds to an excitation of the 2" normal mode

14



Coupled pendula: different initial conditions

consderthese wmy x(0)=a; y(0)=0; #(0)=3(0)=0
initial conditions

Envelope has period 2n/[(w;-w,)/2
These yield: p P .[(. 1 2)/2]

at E
A=dy==; §=¢=0 :
1 2 2 > 1 2 x b N ~ A i :
Here both normal modes are excited
i+ Q: O —Q:- —————— ]
X=acos [ |COS 4 act E
( 2 j ( 2 J
. W+ : . aoh—Q:- y __ ] ] V | ] |
y=—asm ! |SIn 4 3 E
( 2 j ( 2 j
‘Beats’ — energy is being transferred between pendula t



Coupled pendula: different initial conditions

a
In case it is not obvious Start with X = E[COS @, + COS a)zt]

how we obtain form of

a
_ . y= —[cos Wt —Cos a)zt]
expressions on previous page 2

X = % [cos(S + D)+ cos(S —D)]

w, + @, w, —w,

t and D=

Write S= ! and so

y= %[COS(S + D) —cos(S — D)]

Then ,_ %[cos(s +D)+cos(S —D)]

=%[cosScosD—sinSsinD+cosScosD+sinSsinD]

=acosScosD
y= %[COS(S + D) —cos(S — D)]

:%[cosScosD—sinSsinD—cosScosD—sinSsinD]

=—asinSsin D which is what we want
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Energy of coupled pendula

Let’s calculate total energy of system, U =T (KE) + V (PE)

Kinetic energy

Trivial == Tzlmicz—l—lmj/2
2 2

Potential energy

At least two ways to work this out
1
1) Sum PEin spring Ek(y_x)z - 1 (g k

with PE from gravity %?g(xz +9%)

oV
2) Recall F, T and F, ——a—V

X ay

17



Energy of coupled pendula

Potential energy

oV
2) Recall F,=—— and F, ——8—V

Ox 8)/
F =mxX=-mg— +k(y x)——a—V
[ ox

2
= V(x,y)zmg%Jr%kxz—kxy+f(y)+C
oV
F,=my=-m L k(y-x)=—"-
% g (y—x) &

2

= Vix,y) :mg;—l+%ky2 —kxy+ f(x)+C

and so, neglecting constant, which is an arbitrary offset

V(x, y)—%m(‘? kj(x +y°)—kxy as before

18



Energy of coupled pendula

Uzlm()'chrj/z) + lm(ngk)(xz+)/2)—lc3cy
2 2 \I m

This a bit opaque. How does it look in terms of normal coordinates?

1
Recall (here X = T(% +q,) a)l2 :%
with normalisation 12 and g '
factors included): ——(qg. — wr=242—
y \E(ql 1,) =

— U= %m(q'lz + q22)+ %m(wlquz + a)zz%z)

Much neater — note cross-term in V has disappeared. Indeed:

energy in mode 1 energy in mode 2

U = lmq’2+lma)2q2 + lmqr'2+lma)2q2
2 1 2 1 11 2 2 2 2 12

So total energy of system = sum of energies in each mode
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Solving with matrix method

mx = —mg§+k(y—x)

Y

my = —mg % ~k(y =)

Expecting an oscillatory solution
so let’s try substituting one in,
making use of complex notation

2 8k

We obtain: [ m
_k
m

=0

2
d__|_§_|_£
dt> [ m

_k
m

k
, _
dt? | m
bas X &Y are
Re e'”  complex
Y constants

eigenvector
equation

20



Solving with matrix method

We have an homogeneous matrix equation of the sort A\ =0

, g k k
-t 7 + ; N ; (Xj B [0) eigenvector
- equation
_k 2 8 Kk Y) o ]
m m

The non-trivial solution requires the matrix is singular, i.e. has no inverse

= det[4]=0
So here: / m m —0
_k 2 8Lk
m [ m

21



Solving with matrix method

k k
P pa
m [ m
2
W ==
eigenvalue (_a)z+§+£j:+£ . b
equation m m
a)2=§+2E
[ m

Substitute back into eigenvector equation to learn

. o it it
» when w=w, then X=Y, call it 4" =lx =y =Re(4e™e™)
= A, cos(wt+¢,)

* when w=w, then X=-Y, callit 4,¢”> =x=-y= Re(Ale”’l ')
= A4, cos(w,t + ¢,)

Same normal modes & frequencies as before!
22



Unequal coupled pendula

Let’s now see if we can solve in the case when
the pendula have different lengths

1. Solving with matrix method
2. A specific solution

23



Unequal coupled pendula

g 0
F k F
! —) 4=
. Img Lms
N >

b B g

Equations of motion:

mx =-mgx/l, +k(y—x)
my =—-mgy/l, —k(y—x)

24



Unequal coupled pendula

Attack problem with matrix method:

mx=—-mgx/lL +k(y—x)

my =—-mgy/l, —k(y—x)

and so we must

find solutions of k

d> g k k
—+=+— —— 0
dt” [ m m X
k4 g k) (0
m dt> I, m
k k
_k 2 8 kY ) o
m [, m
_k
m
=0
k
[, m

25



Unequal coupled pendula

Requiring
_wr+ 8k _k
[, m m 0
I —
—— o+ 8K
m [, m
yields (_ o’ "'1812 +£)(_ o’ +1322 "‘kj =0 with 181,22 = Zé
m m 1,2

Expanding this and then solving for w? gives
1 2k 2k
@, = 2{(% +f)+ J B =5 +(—j ]
m m

l=1,=1

Sanity check: ) , g and w,,? reduce to equal length solutions
=B =5 :7 '

26



Unequal coupled pendula

Substitute 2] with

1 2k 2k -

a)1,22 = 2{(1812 +1822) +t—= \/(1812 _1822)2 +(_j ] :B1,2 - [
m m 1,2
: k k
_5 o, 22 +§+£ Y 0
m L om

to yield

(B2 py et - g7+ kimy |

ryo__z2k
X, m
In the case /,=/, then B,2=B,2 and one recovers the same length pendulum
solutions X/Y=+1 and -1. It is also interesting to note that one can show

(fj:—u(ﬁj endso o ) - B gy g0 @k |
X ), X ), | we define X m
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Unequal coupled pendula: a specific solution

General solution

X 1 —-r
( j = ( jAl cos(wt+¢,) +( . jAz cos(w,t +¢,)
y v

Now consider the initial conditions

x=a;y=0;x=y=0
= A =all+17); 4, =—ra/(1+7); ¢,

Hence

x(t) = a[cos wt+7’° cos a)zt]/(l +7%)
y(t) = ar|cos wt — cos w,t |/(1+r*)

which can be written

=g =

‘Beats’ solution as before, but now
with r< 1 there is incomplete transfer

x(t)=a COS(M tj cos(M tJ
2 2

of energy between pendula

—a(l_rzjsm((a)l 2)j ((1 a)z)tj y(z‘)=—2a( " jsin(wtjsin(wtj
1+7° 2 2 1+7? 2 2
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Diagrammatic representation of normal modes
We have seen that systems with X ~ Re X ol and possess 2
2 d.o.f. have solutions of the sort normal modes

Normal mode motion is specified by the ratio X /Y
Can represent this by a unit-length vector v=(Xi+Yj)/VX +Y°

Some examples:

Y Y Y
e.g. = tan’lr in case
M of unequal
AV
! Vi / coupled pendula
Vs 45° 0
> X X X
V2
\E
two completely coupled coupled
uncoupled identical non-identical

pendula pendula pendula .



Spring-mass systems

Now we will consider a horizontal system. Same
analysis methods will apply as before.

1. Solving with decoupling or matrix method
2. Energy of system

3. A specific solution

And after this we will consider a vertical

spring-mass system

30



Horizontal spring-mass system

Consider two masses moving without friction, between three springs,
two with spring constants ak, one with spring constant k

ak ak

Equations of motion:

mui, =—caku, —k(u, —u,)

mii, =—coku, +k(u, —u,)

31



Solutions of horizontal spring-mass system

Equations of motion:

mui, =—cku, —k(u, —u,)
mii, =—caku, +k(u, —u,)

Solve by decoupling method. Write down normal coordinates (here p & q):
1 1

=—= (U, +u u = +
P \/5(1 >) which 1 \/E(p q)
q—i(u ) means ., _L( —9)
\/5 D) 2 \/5 P—q
Substituting these in gives:
. ak . (a+2)k
p=—"PD q=- q
m m
Gives nor.mal . ok , (a+2)k
frequencies of: W, =— @, =
m m

Motion of two modes is ‘centre-of-mass’ and ‘relative’ as before
32



Cross-checking with matrix method

Write equations of motion as
homogenous matrix equation

& ok k _k

dt> m m m Ui | _ 0
k d> ok k u, 0
—_— - _+_
m dt* m m

Demand that the resulting operator
matrix is singular, i.e. Det{matrix}=0

ak k k
+_ " ¥ (

Substitute in the
below trial solution

= Re e
u, Y

Hence get eigenvalue equation

ok kj (ka
W' +—+ — | =0
m m m

m m m —0
k . ak k
—— —° +——+—
m m m
. X=Y
We obtain same PN (a+2)k with or
solutions as before m m Y =_Y

33



Energy of horizontal spring-mass system

Let’s evaluate total energy, U=K+V, of system

| .
Kinetic energy K= Em(ul2 +u22)

1 ) )
=—m(p~ +
5 (p"+q°)

Potential energy r :% fu,” + %k(u2 —u,)” + %akuzz

1
1 akp® + > (a+2)kq’

2
_1 2 9 1 2 2
=S mao, p +§ma)q q
Total energy energy in mode 1 energy in mode 2
1 ) 1 2 2 1 ) 1 2 2
U=|—mp"+—mw T | Fmqg +-mo, q
(2 Py P 2 2

Again, the sum of energies of each normal mode!



A specific solution for
horizontal spring-mass system
General solution is a sum of the two normal modes
u =A4,cos(wt+¢,)+ A, cos(wt+¢,)
u,=A,cos(w,t+¢,)— A, cos(wt+¢,)
Consider specific initial conditions u, =u,; u, =0; u, =u, =0

These imply 4, =4, :”_20; 4, = =0

2
u, = I%O (cos(a)pt) — cos(a)qt)) =—u, sin( (wp —;a)q ﬁjsin[ (Cf)p —za)q )tj

U, = %0 (cos(a)pt) + cos(a)qt)): U, COS((% J;wq)f j COS( (@, - coq)t]

Both normal modes excited. The ‘beats’ solution.
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Vertical spring-mass system

x and y are displacements
from equilibrium positions

k
2mx =k(y—x)
2m my =k(x—y)
x|
k * Find the normal frequencies

of the system

v m * Find the ratio of the amplitudes
l for each normal mode

36



Solving with matrix method

Write equations of motion as Substitute in the
homogenous matrix equation below trial solution
d> k k
SaEE N X X\ .
dt™ m 22m ( j:£j — Re e’
k& k) o y Y
m dt- m

Demand that the resulting operator

matrix is singular, i.e. Det{matrix}=0 Hence get eigenvalue equation
2 2
ok ke Y 10k
k , k m 2\ m
m m

From this we obtain the 2 _
. = |0, =—|lt—
normal frequencies m

37



Normal modes of vertical spring-mass system

Normal mode 1 2 _k (1+Lj

Substitute back into (_ a)uz +£jX_(in —0 X v

eigenvector equation

to yield X/Y=-1/42

Normal mode 2

correspondsto | X /Y =1/+/2

38



Coupled oscillators with driving terms

Now we return to our friend the coupled pendula
system and analyse it in the case that the oscillations
are driven by an external force, and also allow for

a damping factor.

1. Finding complementary function
2. Finding particular integral

and finally exercise the same formalism on

3. Horizontal spring mass system

39



Damped driven coupled pendula

0, "\ !
F cos ot k .
—»/VV\NVVVVV\NWWVVV\N -
| mg i Lms
— i >
X Y

Both pendula experience a retarding force of y x velocity

Equations of motion:
mx =—y—mgx/l+k(y—x)+ Fcosat
my ==y —mgy/l—k(y—x)

40



Damped driven coupled pendula

X
Let’s arrange equations of motion in form A( j = whatever
We have: 4

=—m—mgx/l+k(y—x)+ F cosat
my =—yy—mgy/l—k(y—x)

and so
2
d_2+li+(§+£j _E
dt* mdt [ m m X :E 1 Re[exp(iat)]
K &, 24 (e 1))l
m dt mdt [ m

Contrary to before, this equation is inhomogeneous, in that RHS#0.
To solve it we need to find both the complementary function (CF), which
is solution to the homogeneous equivalent, and the particular integral (P1)

41



Damped driven coupled pendula: finding CF

To find CF write down homogenous equation and solve as previously

d 2
dt®

7/d
mdt
k

m

y

/4
m

o it {f;’ k

(§+£
[ m

J

9

d2
di®

y d

m dt

k

m

o

X X .
Try ( j: Re(yjew" and find solution when operator matrix is singular

§+£j
[ m

_k

m
— +za)7+(g+£
m [ m

42



Damped driven coupled pendula: finding CF

To find CF write down homogenous equation and solve as previously

—w2+ia)l+(§+£j _k
m \[ m m ~0
_k —a)2+za)l+[§+£j
m m [ m
' NI (kY ' k k
= —a)2+za)+(§+—j — —j =0 = —a)2+za)+(§+—j :i(—j
m [ m m m [ m m
' _o2 1 _2 1 k
glves’Fhe a)lz__Ya)_gzo and a)22__7/w_ g.72% 9
equations m / m [ m
which are
l a)2:§
with y y 2\ ] 1T the results
: 2 where
solutions wl,zzlzi(a)l,z _(2j] , g Ak from the
m m o, =—+2; undamped

scenario
(note, no physical difference between =+ variants. Just use + from now on.) 43



Damped driven coupled pendula: finding CF

Substitute eigenvalues into the below:

—01,22+lw};;2y+(%+£j —% X
k » 1@,y (g kj (YJ:O
—— @, | =+ —
m ’ m [ m

X X

to deduce one mode has X=Y, & the other X=-Y. Since ( ) = Re(Yjexp(iwl’zt)
y

We get the CF:

2 o @ oo 2o

Note the exponential decay factor.
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Finding CF with decoupling method

The equations of motion

mx =—y—mgx/l+k(y—x)

my =—y—mgy/l—k(y—x) |
9, = NG (x+y)
can be decoupled with the normal coordinates 1
9, :ﬁ(x—J/)
to yield the 2" order homogeneous differential equations , g
W, ==
.o Y. 2 . V. 2, —0 th L
G+—q+0 =0 ¢+—q,+0,q,= wi , g .k
m m w, = 7‘|‘2—
m

that can be solved through trial solution g=Re( e '“t) to give same results
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Damped driven coupled pendula: finding Pl

We have the CF. Now we need to find the PI, i.e. a solution to the full equation

d? y d (g kj k
— | 2+ ——
dt* mdt [ m m x| F(l R :
k d2 d g k _% O e[exp(lat)]
—— —2+1—+(—+—j Y
m dt© mdt [ m

X P) .
Try this ansatz ( j = ReH je"’“} which means solving the following

y 0
—a2+ia1+(§+£j _k
m [ m

oo
_k —a2+ial+(§+£j Q) m\0

m m m
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Damped driven coupled pendula: finding Pl

We have matrix equation of the sort: MU=V

M U vV
\
( |
k k
—a2+'al+(§+—) -
_k —a2+ia1+(§+£j Q) m\0
m m \[ m

47



Damped driven coupled pendula: finding Pl

k

—a2+ia1+(%+—j _k

Need to find the inverse of M = m m m
k o .y (g k
—dttial+| 2+
1 m m m

M = adi(M)
det M




Damped driven coupled pendula: finding Pl

k k
a Ham(f j k
Now adjM = ”;{ " " y
— 1 +za7/+ g j
m m l m
and we can write
—at il a8k l(—ochrilthE}Ll(—of+iloc+§+%j
m [ m 2 m [ 2 m [ m

= %[Ble_m‘ +Bze_i02]

L l(—052+i105+§+%j 1(—a2+ila+§j
m [ m m [

:%[B2 i _ e ]

and so » 0 0 0
1({Be™" +B,e™ Bye *—-Be"
-i6 -i6 - -i0
B,e"™ —Be™ Be " +B,e"”

49



Damped driven coupled pendula: finding Pl

M =

1 . i(6,46,) -i6, -i6, 0, -if)
adi(M) _e Be | + B,e | Bze. Be |
det M 2BB, \ B,e’” —Be™ Be ' +B,e
1 (Ble"e2 +B,e” B, —Be ezj

2B,B,\ B,e' —Be'” Be'” +B,e"”

1) .
Recall (x] — FRe{Ml[ je’“’}
v m 0

x) F (Bjcos(at+6,)+B,cos(ar+06,)
y - 2mB B, \ B, cos(at +0,)— B, cos(at + 6,)

we have it !

| =

—ay/m

2
Wlth BI,Z = ((0)1’22 _aZ)Z +(%j J and tan 91’2 = > >
m (C()L2 —a’)

50



Finding Pl with decoupling method

Inhomogeneous equations written in terms of normal coordinates

q, +%q1 +a)12q1 =—cosat (1) 1 1

n %:f(x*'y) %Z\/E(X_J’)

q, +1q.2 "‘a)zz% :ECOS at (2)
m m
Trial ansatz for (1) ¢, = Re[4, exp(ian)] 4 = (F/m)exp(i6)
=
F (@7 =a?f +(@y/my)”
=|—a’+vial +& A =— with
m ] m _ —(ay/m)
tanf, = —5——
F/ o
Hence 9, = (Em) 72 cos(ar +0))

((0)12 —a?)? +(a7j j
m

Same procedure for (2) gives entirely analogous expression for g,.

From these same expressions are obtained for x and y as before. -



Damped driven coupled pendula: full solution

Solution = CF + PI

N | —

(Jree | e[ -G TG

F B, cos(at+6,)+ B, cos(at + 6))
_|_
2mB,B, \ B, cos(at +0,)— B, cos(at + 0,)
2\ _ k
with B, = (a)lzz—az)2+(ﬂj , tan@, , = 02[7/’72 , w; - & - Nl
, ’ m T (o, —aY) ! ! m

The CF part is the ‘transient solution’ determined by the initial conditions;
the Pl part is the ‘steady state solution’” determined by the driving force.
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Horizontal spring-mass system
with driving term

Consider two masses moving without friction, with two springs of spring
constants 2k and k respectively, connected to wall which is driven [ I J
t

by an external force to have time-dependent displacement x(7) = 4sin
m

A —> U, —> U,
x(t) = Asm(\/itJ
m

Equations of motion:

=2k x(t) —u, | = k(u, —u,)
=k(u, —u,)
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Horizontal spring-mass system

with driving term — find the CF

Write down the homogeneous case
and find CF using matrix method

U, ul .. .
Try — Re e gives
u, U, [

mii, =—3ku, + ku,

mii, =k(u, —u,)

Requiring determinant = 0 yields @,

Substitute back in to eigenvector equ" (

(—mo’ +3k) —k 0
—k (—maw’ +k)

Zzﬁ[ziﬁ]

U2J —1-+/2 |and UzJ =1++/2

Ul 1 1 /2
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Horizontal spring-mass system
with driving term — find the PI

2
We have the CF. Now we d_2 ko _k y n
need to find the P, i.e. dt km " mk ( lj ( jRe[exp(z\/:t)]
a solution to the full equation _ a u,) m\0 m
m dt* m
2k k
P *, which E— —
Try ansatz “ —Re e\/; neans m m P :k_A 2
U, 0 k 0, m |0
solving —— 0
m
| f k
nverse o | o =] o i p 0
LHS 2x2 m |_ and <o _
matrixis —(k/m)*| kK 2k | fl-1 -2 0 —24
m m
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Solution = CF + PI

Horizontal spring-mass system
with driving term — full solution
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e
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1
J2

0
2A

COS [UZ 2+ \5}

/ k
cos ,|—t
m

1

2
t+ ¢,

Jool e[z

1

2
t+ ¢,

]
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