Cherenkov Radiation and RICH Detectors

Basic expression of Ch radiation

History of the Ch radiation and the RICH

What is a RICH?

Physics for which you need a RICH

Ingredients of a RICH

Illustrative RICHes – geometry, radiators, photodetectors…
DELPHI
BaBar DIRC
LHCb

Large scale RICH systems:
• Super-K
• Icecube

Epilogue: a very quick look at transition radiation
Cherenkov Radiation in a Nutshell

Fundamental Cherenkov relation:

\[\cos \theta_C = \frac{1}{n \beta} \]

Both a threshold and thereafter, an angular dependence up to saturation \((\mathcal{Q}=1)\)

Frank-Tamm relation:

\[\frac{dN_{\gamma}}{dE} = \left(\frac{\alpha}{\hbar c} \right) Z^2 L \sin^2 \theta_C \]

So number of photons will also increase with velocity (up to saturation)
History of Cherenkov Radiation

• Prediction of Cherenkov radiation: Heaviside 1888
• Discovery (by accident): Pavel Cherenkov 1936

Radiation seen when uranyl salts exposed to radium source.

Sergey Vavilov was Cherenkov’s supervisor, and hence Russians refer to Vavilov-Cherenkov radiation

• Explanation: Tamm and Frank 1937
• Experimental exploitation in HEP pioneered by Cherenkov himself

(Cherenkov, Tamm, Frank: Nobel Prize 1958)
Fathers of the RICH

Cherenkov: 1936 – discovery

Arthur Roberts: 1960 - first to propose exploiting ϕ_c

Tom Ypsilantis: 1977 - driving force behind practical RICH

1905-1990

1912-1994

1928-2000
What is a RICH?

Measurement of θ_C from RICH, together with p, from tracking system, allow mass, and hence PID to be determined.

This is an excellent way of separating π from kaons and protons.

The simplest way to exploit Cherenkov radiation is to choose n such that heavy particles do not emit light. This works OK if p range narrow.

\rightarrow Cherenkov counter (not a RICH!)

But if we want to do better, or if momentum is far from monochromatic, then we need to measure θ_C. We have to image the ring. This is a RICH!
Belle Cherenkov Counter: not strictly a RICH!

Cherenkov technique allows hadron PID even when ring not imaged → merely look for presence/absence of light. No light means heavy particle. (‘veto’ or ‘threshold’ mode)

Amount of light seen can still be exploited.

This a viable approach if we do not need to cover a large range in p!
Experiments which need Hadron ID

• B physics CP violation studies
• Hadron spectroscopy/exotic searches
• Large volume neutrino detectors (special case – see later)

In all cases, benefit from imaging Cherenkov rings!
B (& D) Physics Requirements for PID

B physics CP violation experiments perform exclusive reconstruction of final states, with & without kaons (and protons). Hadron PID mandatory.

eg. selection of $B \rightarrow h^+h^-$ - below is an LHCb simulation study

Another example: kaon ‘flavour tagging’ – essential in CP measurements
Suppress background from combinatorics.

In building up, eg.

\[B \rightarrow D \ X \rightarrow n \Box K \ X \]

PID allows much cleaner reconstruction of intermediate charm mesons → cleaner B
An example: pentaquark search

\[e^+ + D \rightarrow \Theta^+ + X \rightarrow K_s^0 p + X \rightarrow \pi^+ + \pi^- + p + X \]

\(\Theta^+\) identified in pK\(_s\)

RICH essential for background suppression
HERMES pentaquark signal

Peak at:

\[M = 1527 \pm 2.3 \, \text{MeV} \]
\[\sigma = 9.2 \pm 2 \, \text{MeV} \]

Significance:

\[\frac{N_s^{2\sigma}}{\sqrt{N_b^{2\sigma}}} = 6.1 \, (\text{naïve}) \]
\[\frac{N_s}{\delta N_s} = 4.3 \, (\text{realistic}) \]

PLB 585 (2004) 213

mixed event background
excited \(\Sigma^* \) hyperons (not included in Pythia6)
Ingredients of a RICH

We need a radiator, a mirror and a photodetector.

Why do we need mirrors?

1. Often to take light out of acceptance
2. Mirrors focus light. Without mirrors we would have a splodge.

But sometimes it is true we can survive without mirrors…
Proximity Focusing

If radiator is sufficiently narrow in extent, then light which emerges will be a ring, rather than a splodge.

This is proximity focusing.

Works with solid and liquid radiators, where we get plenty of photoelectrons.
Considerations in Building a RICH

Want to optimise ring resolution. Ring resolution determines how far in momentum PID extends.

\[\sigma_{\theta_C^{\text{ring}}} = \sigma_{\theta_C} / \sqrt{N_{\text{pe}}} \]

Contributions to \(\theta_C \):

- Emission point error (how well the focusing works)
- Detection point error (the spatial resolution of the photodetector)
- Chromatic error – we will explain this later.

\(N_{\text{pe}} \) optimised through radiator choice & length, and photodetector performance.
OMEGA, DELPHI & SLD were the first experiments to use RICHes in anger.

DELPHI/SLD RICHes (CRID) very similar.

Provided PID from low p up to 25 GeV or so.
DELPHI/SLD RICH – the principle

Very nice!
3 fluid system, mirrors and HV shoehorned into 70cm (inaccessible) gap

The horror, the horror!

- Gas radiator C_5F_{12}
- Photosensitive (TMAE) drift volume
- Liquid radiator C_6F_{14}
- MWPCs
- Mirrors
TMAE / What was tough about DELPHI

What is this TMAE stuff?

• Tetrakis dimethylamine ethylene
• Glows sickly green on contact with oxygen
 (“If it glows you’re screwed, if it doesn’t glow your screwed” from CRID group’s ‘Laws of TMAEDYNAMICS’)
• Sensitive in UV

Some modest challenges of the DELPHI (& SLD) RICH (CRID):

• Very limited and inaccessible space for 3 fluid system and mirrors.
• Need to keep gas radiator at 40 degrees to stop it condensing, whereas TMAE kept at 28 degrees (to optimise absorption length)
• Liberated photoelectrons have to drift 1.5 m (TPC technique)

Unsurprisingly, took a long time to commission. Not a plug and play detector. Many crises along the way. But when working it worked a treat!
Tagging s-$sbar$ jets
BaBar Detector of Internally Reflected Cherenkov Light (DIRC)

DIRC thickness:
- 8 cm radial incl. supports
- 19% radiation length at normal incidence

DIRC radiators cover:
- 94% azimuth,
- 83% c.m. polar angle
BaBar PID requirements:

• π-K separation up to 4 GeV
• Low track density
• Must be fast (bx every 4 ns)
• Severe space and material constraints

BaBar DIRC

DIRC an ideal solution!
DIRC “Ring” images:
- limited acceptance for total internal reflection,
- reflection ambiguities (initial reflection up/down, left/right, reflection off mirror, wedge
 → up to 16 (θ_c, ϕ_c) ambiguities per PMT hit),
- toroidal detection surface,
→ Cherenkov ring images are distorted:
 complex, disjoint images

Low energy photons from accelerator hit Standoff Box.
At current luminosity that causes rates of 80-200 kHz/tube.

80-200 kHz \otimes 10,752 PMTs \otimes \pm 300 nsec trigger window
→ 500-1300 background hits (~10% occupancy)
compared to
50-300 Cherenkov photons
Time information provides powerful tool to reject accelerator and event related background.

Calculate expected arrival time of Cherenkov photon based on
 • track TOF
 • photon propagation in radiator bar and in water

Δt: difference between measured and expected arrival time

± 300 nsec trigger window (~ 500-1300 background hits/event) \rightarrow ± 8 nsec Δt window (1-2 background hits/sector/event)

$\sigma(\Delta t) = 1.7$ nsec

DIRC RECONSTRUCTION
DIRC Performance

N_{pe} and resolution

π-K separation vs momentum

$\sigma(\Delta \theta_c) = 2.4 \text{ mrad}$
LHCb: a two RICH (3 radiator) detector
Why RICH? Why 3 radiators?

Physics requirements, and kinematics of b production, mean there is a big range in the momentum of the hadrons we wish to identify.

Only suitable PID technique is RICH. Even then, three radiators are needed: Low p: aerogel; middle p: C_4F_{10}; high p: CF_4. Aim to span $2<p<100$ GeV/c.
LHCb RICH 1: a two-in-one detector

- Aerogel
- Gas volume
- Flat Mirror

Spherical Mirror, tilted at 0.3 rad to keep photodetectors outside acceptance

Photodetectors, enclosed in magnetic shielding box (not shown) to protect vs fringe field of dipole magnet
Aerogel as a RICH Radiator

Aerogel: a low density form of quartz.

Refractive index ~ 1.03. Well suited to low momentum π-K separation.

Used extensively in threshold counters, but not in RICHes (only operational example is HERMES)

The problem of Rayleigh scattering:

$$T = A e^{-C t / \lambda^4}$$

Scattering of photons limits transmission at low wavelength. Scattered photons \rightarrow background.

Aim for as clear samples as possible, which means low values of C (=‘clarity coefficient’).
A significant source of uncertainty in the Cherenkov angle determination, and one which is important for aerogel in particular, is that of chromatic dispersion. Refractive index varies with wavelength/photon energy, and hence so will θ_c.

Control this effect by limiting wavelength, as far as possible to visible. Do this with choice of photodetector technology &/or filters.

Visible light preferable to UV!
Hybrid Photo-Diodes (HPDs)

What kind of photodetector do we need for high performance PID at the LHCb? Requirements:

- Good single photon efficiency
- Sensitivity in visible
- Capacity to cover large area (several m²)
- Good spatial resolution (order mm²)
- High rate capabilities

Solution – the HPD:
HPDs and Testbeam Results
LHCb RICH already performed well with very first (2009) collision data
LHCb RICH: performance on ‘B→hh’

Two-body charmless B decays are central goal of LHCb physics. Significant contribution of Penguin diagrams provides entry point for New Physics.

RICH critical to dig out contributing modes!

- **B^0 → Kπ**
- **B^0 → ππ**
- **Λ_b → pK**
- **B_s → KK**

LHCb preliminary

Inclusive spectrum, \(\pi\pi\) hypothesis

Deploy RICH to isolate each mode!
Using RICH can measure CP violation in Kπ final state [LHCb-CONF-2011-042] :

• Firstly look at B^0 \rightarrow K\pi

\[A_{CP}(B^0 \rightarrow K^{+}\pi^-) = -0.088 \pm 0.011\text{(stat)} \pm 0.008\text{(syst)} \]

• Now look at B_s \rightarrow K\pi

\[A_{CP}(B^0_s \rightarrow \pi^{+}K^-) = 0.27 \pm 0.08\text{(stat)} \pm 0.02\text{(syst)} \]
Large water volume neutrino detectors

Examples:

• SNO

• Super-Kamiokande
 50 k ton H$_2$O
 1 km underground

Cherenkov rings are an ideal technique for detecting $\nu \rightarrow \mu, e$
Cherenkov Rings in Super-K

Cherenkov light a perfect signature of a neutrino interaction in water.

No momentum measurement, so PID performed from sharpness of ring. Timing response of PMTs necessary to determine particle direction.
Whoops!
Antartica
Ice Cube: a Cherenkov Counter for Studying High Energy Neutrinos
Hit Multiplicity → Energy Measurement

$E_\mu = 10 \text{ TeV}, 90 \text{ hits}$

$E_\mu = 6 \text{ PeV}, 1000 \text{ hits}$
Photodetectors for Ice Cube

- records timestamps
- digitizes waveforms
- transmits to surface at request via digital communications
- can do local coincidence triggering
- design requirement
 Noise rate ~1 kHz
- SN monitoring within our Galaxy

optical sensor
10 inch Hamamatsu R-7081

- penetrator
- pressure sphere
- optical gel
- mu metal cage
- HV board
- flasher board
- DOM main board
- delay board
- PMT
RICH Conclusions

RICHes are tricky! Only build one if you absolutely need to.

“Very often this technique is criticised as being too difficult and not reliable. We admit that in some senses this is true…”

Tom Ypsilantis

But sometimes you absolutely need to:

• B Physics Experiments
• Spectroscopy

Cherenkov detection is a vital tool in armoury of experimental HEP: RICH detectors, neutrino detectors, …
Epilogue: a superficial look at transition radiation detectors

What is transition radiation and what is its use in HEP?

Brief examples:

1) ATLAS TRT
2) AMS TRD

For more information:

Basics of Transition Radiation

Transition radiation emitted when particle moves across interface of 2 media with different dielectric constants (predicted in 1946 by Ginzburg and Frank)

Consider ultra-relativistic particle passing through thin foil of material (1) in environment of material (2), then differential distribution of radiation is:

\[
\frac{d^2 E_{TR}}{d\omega \, d\Omega} = \frac{\hbar \alpha}{\pi^2} \left(\frac{\theta}{\gamma^{-2} + \theta^2 + \left(\frac{\omega_p}{\omega}\right)^2} - \frac{\theta}{\gamma^{-2} + \theta^2 + \left(\frac{\omega_p}{\omega}\right)^2} \right) \times 4 \sin(\varphi_1)
\]

\(E_{TR}\) is energy of radiation; \(\omega\) is angular frequency; \(\omega_p\) is plasma frequency; \(\Theta\) is angle of emission. \(\Phi_1\) is phase angle, due to interference between boundaries.

Characteristics of transition radiation:

1) Forward peaked
2) X-rays
3) Total energy radiated proportional to \(\gamma\)!
Transition Radiation & HEP Applications

Dependence on γ makes TR an attractive method of PID, particularly for discriminating between electrons and hadrons. Used for non-destructive electron identification (cf. calorimeter). Works over wide momentum range.

Experimental challenges:

1) Radiation very feeble.
 So require many foils (usually lithium or polyethylene)

 Interference and absorption effects lead to low γ threshold (good) and to saturation – loss of γ proportionality (bad)

2) Forward peaking means that almost always X-rays and primary particle are seen by same detector. Generally one detects particle dE/dx and TR together. So must distinguish sum of energy from dE/dx alone, or look for clusters specifically associated with absorption of the X-rays.
ATLAS Transition Radiation Tracker

Part of the ATLAS Inner Detector.

Provides combined tracking, with standalone pattern recognition and electron identification.

Layers of xenon filled straw tubes interleaved with polymer fibres (and foils in endcaps).

Can suppress pions by a factor of about 100, for 90% electron eff.
AMS TRD

Purpose: to look for positrons and suppress proton background by factor of 10^6. To be achieved by combined TRD / ECAL system.

20 layers of polypropylene radiator and proportional straw tubes (Xe)

90% e-id efficiency for 0.1% contamination