## **Energy & Momentum Summary**

Kinetic energy 
$$oldsymbol{W}$$
 is

$$W = mc^2(\gamma - 1)$$

When 
$$v = 0$$
,  $\gamma = 1$ ,  $W = 0$ 

Define Energy

$$E = W + mc^2$$

$$E = \gamma mc^2$$

$$E^2 - p^2c^2 = m^2c^4 \qquad \text{INVARIANT}$$

$$p^2c^2 - E^2 = -m^2c^4$$

Now when  $\gamma = 1$ ,  $E = mc^2$ m =**REST MASS** of object.

$$x^2-c^2t^2=-c^2 au^2$$
 INVARIANT

#### Transformation of E and p

$$p_x' = \gamma(p_x - \beta E/c)$$

$$p_y' = p_y$$

$$p_z' = p_z$$

$$E'/c = \gamma(E/c - \beta p_x)$$

Therefore once more we may define a 4-vector such that:

$$X_{\mu} = L_{\mu\nu} X_{\nu}$$

where X is a 4-vector &  $L_{\mu\nu}$  is the Lorentz Transformation matrix.

$$x_{\mu} = (x,y,z,ict)$$
  $p_{\mu} = (p_x,p_y,p_z,iE/c)$  and  $L_{\mu
u} = \begin{pmatrix} \gamma & 0 & 0 & ieta\gamma \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ -ieta\gamma & 0 & 0 & \gamma \end{pmatrix}$   $k_{\mu} = (k_x,k_y,k_z,i\omega/c)$ 

#### **Relativistic Kinematics**

Particle physics units:

$$m = \text{MeV/c}^2$$
  $p = \text{MeV/c}$   $E = \text{MeV}$  1 eV = 1.6 x 10<sup>-19</sup> J

Then

$$E^2 = p^2 + m^2$$

In particle physics  $\beta \approx 1$  therefore

$$E = \gamma mc^2$$
 &  $|\mathbf{p}| = \gamma mc\beta$ 

thus

$$\gamma = E/mc^2$$
 &  $\beta = |\mathbf{p}|c/E$ 

Therefore in particle physics units:

$$\gamma = E/m$$
 &  $\beta = |\mathbf{p}|/E$ 

$$\gamma = E/m$$
 &  $\beta = |\mathbf{p}|/E$  and  $t_{\mathrm{part}} = \gamma \tau_{\mathrm{part}} = \frac{E \tau_{\mathrm{part}}}{m}$ 

#### **Centre of Mass or Centre of Momentum**

$$S = \left[\sum_{i} E_{i}\right]^{2} - \left[\sum_{i} \mathbf{p}_{i} c\right]^{2}$$

Is **INVARIANT** for a group of particles.

In C of M frame: 
$$S = \left[\sum_i E_i^*\right]^2 = E_{\mathrm{cm}}^2$$

Where  $E_i^*$  is the energy of the  $i^{th}$  particle in that frame.

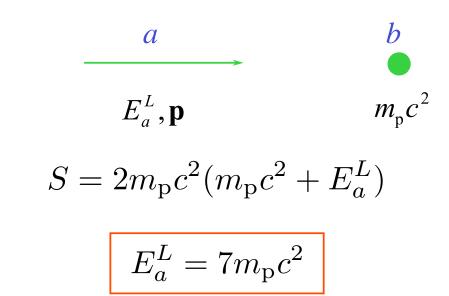
Then:

$$\gamma_{\rm cm} = \frac{\sum_{i} E_i}{E_{\rm cm}} \quad \& \quad \beta_{\rm cm} = \frac{\left|\sum_{i} \mathbf{p}_i c\right|}{\sum_{i} E_i}$$

## **Threshold Energies**

$${
m p}+{
m p} o {
m p}+{
m p}+\left({
m \bar p}+{
m p}\right) ~~E_{
m cm}=4m_{
m p}c^2$$
 
$$S=E_{
m cm}^2 ~~{
m is invariant}$$

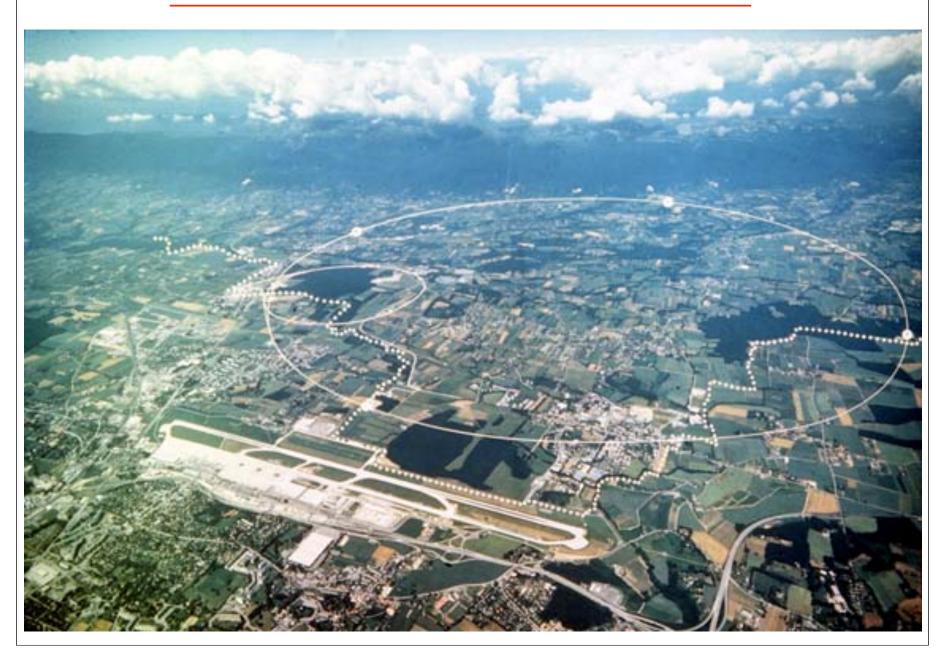
Lab Frame:



N.B. Lorentz transformations are <u>not</u> needed. In general:

$$E_{\rm cm} = (m_1^2 + m_2^2 + 2m_2 E_1)^{\frac{1}{2}}$$

## **CERN** – on the Swiss/French border

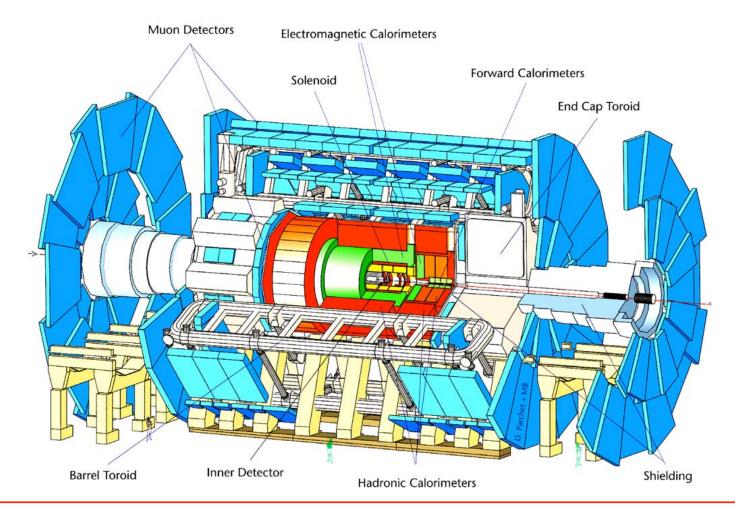


## **CERN** – on the Swiss/French border



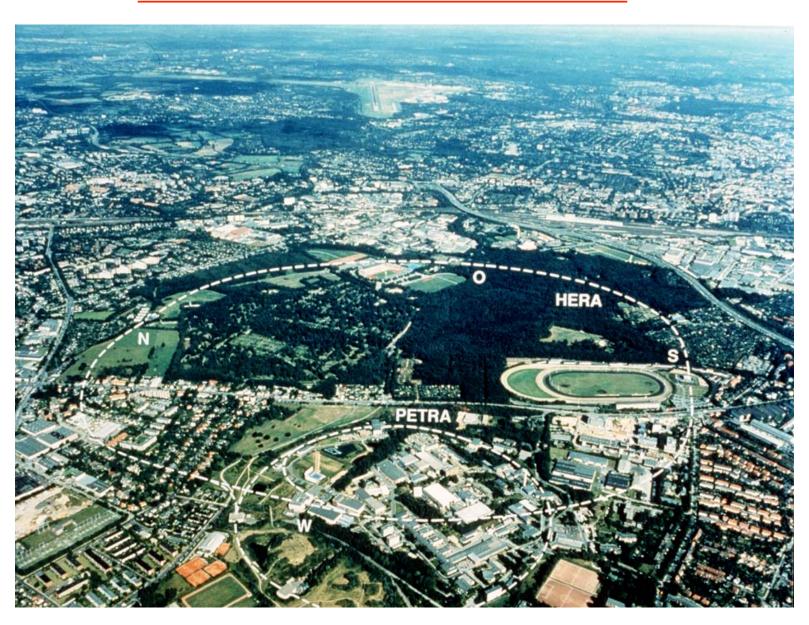
#### The ATLAS detector at CERN's LHC collider

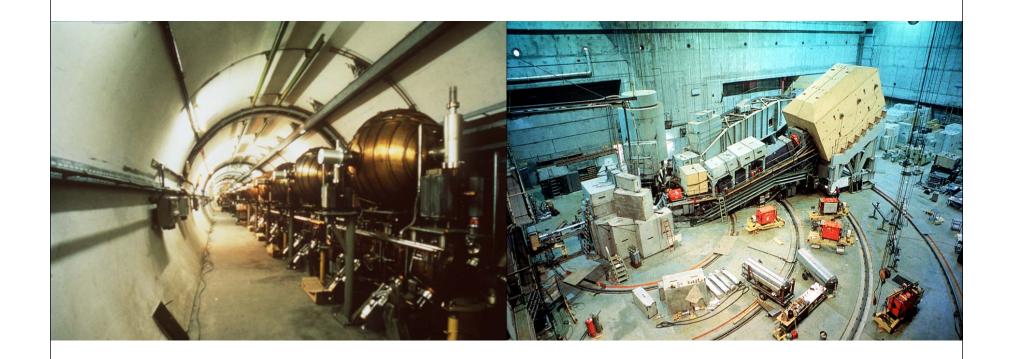
D712:He-24:06:9



**ATLAS** detector at the **Large Hadron Collider** (LHC) at CERN (which will accelerate each of two counter-rotating beams of protons to 7 TeV per proton). The detector will look for the Higgs boson.

# **DESY – in Hamburg, Germany**





The accelerator and tunnel at LEP, CERN before it was ripped out for the LHC which will switch on in late 2007.

Particle detector at DESY in Hamburg

## The Stanford Linear Accelerator (SLAC) in California

