What About Momentum?

Newton says:

$$\mathbf{p} = m\mathbf{v}$$

$$\mathbf{F} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = m\mathbf{a}$$

Conservation of momentum

Conservation of energy

As $\mathbf{p} \to \infty$, classically $\mathbf{v} \to \infty$

In fact:

$$\mathbf{p}_{\mathrm{rel}} = \gamma m_0 \mathbf{v}$$

This is **not** allowed in special relativity.

Therefore:
$$\mathbf{p}_{\mathrm{rel}} = m_0 f(v) \mathbf{v}$$

Where m_0 is the **REST MASS**.

Newton's Second Law

$$\mathbf{F}_{\text{rel}} = \frac{\mathrm{d}\mathbf{p}_{\text{rel}}}{\mathrm{d}t} = m \frac{\mathrm{d}}{\mathrm{d}t} \left[\gamma \mathbf{v} \right]$$

$$\mathbf{F}_{\rm rel} = \gamma m\mathbf{a} + m\mathbf{v}\frac{\mathrm{d}\gamma}{\mathrm{d}t}$$

Therefore Force = mass x acceleration is **not** valid in special relativity.

Lorentz Force

$$\mathbf{F} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\gamma m \mathbf{v} \right) = q \mathbf{E} + q \mathbf{v} \wedge \mathbf{B}$$
 \mathbf{E} = electric field

$$q$$
 = charge (INVARIANT)

Capacitor Example

$$\frac{\mathrm{d}}{\mathrm{d}t} = \left[\frac{v}{(1 - v^2/c^2)^{\frac{1}{2}}} \right] = \frac{qE}{m}$$

$$v = \frac{c}{(1 + m^2 c^2 / q^2 E^2 t^2)^{\frac{1}{2}}}$$

$$v \approx \frac{qEt}{m}$$

(as required by Newton)

Momenergy

1ns/division

Motion in a Magnetic Field

B points down into page

$$f_{\text{mag}} = qvB = \gamma m \frac{\mathrm{d}v}{\mathrm{d}t}$$

$$a = \frac{\delta c}{\delta t}$$

$$aB$$

$$a = \frac{qvB}{\gamma m} = \frac{v^2}{r} \& r = \frac{\gamma mv}{qB} \& \omega = \frac{qB}{\gamma m}$$

Elastic Collision

$$\mathbf{v}_1$$

$$(-v_x, -v_y)$$

$$(-v_x, v_y)$$

$$\mathbf{v}_2$$

$$(v_x, v_y)$$

$$(v_x, -v_y)$$

$$\mathbf{v}_1$$
 \mathbf{v}_2
 \mathbf{v}_1'
 \mathbf{v}_2'
 $(-v_x, -v_y)$
 (v_x, v_y)
 Before
 $(-v_{x'}, -v_{1y'})$
 $(0, v_{2y'})$
 $(-v_x, v_y)$
 $(v_x, -v_y)$
 After
 $(-v_{x'}, v_{1y'})$
 $(0, -v_{2y'})$

$$(0, v'_{2y'})$$

 $(0, -v'_{2y'})$

$$\sum mv = 0$$
 in y direction

$$\sum mv' \neq 0 \quad \text{in y' direction since}$$

$$v'_{1y'} \neq v'_{2y'}$$

Relativistic Energy

$$W = \int F \mathrm{d}x = \int_0^t F v \mathrm{d}t$$

Then:

$$Fv = mv^2 \frac{\mathrm{d}\gamma}{\mathrm{d}t} + m\gamma v \frac{\mathrm{d}v}{\mathrm{d}t}$$

$$Fv = mv^2 \frac{\mathrm{d}\gamma}{\mathrm{d}t} + m\gamma v \frac{\mathrm{d}v}{\mathrm{d}t} \qquad W = mc^2(\gamma - 1) = mc^2 \left[\frac{1}{(1 - v^2/c^2)^{\frac{1}{2}}} - 1 \right]$$

This is the **Relativistic Kinetic Energy**.

$$E = W + mc^2 = \gamma mc^2$$

Then

Thus $E^2 - p^2c^2$ is an **INVARIANT**

$$E^2 - p^2 c^2 = m^2 c^4$$

And so we have :-