
1st Year Relativity - Notes on Lectures 1 & 2

Lecture One

1. Maxwell and the speed of light.

Maxwell’s equations in free space produce wave equations of the form

∇2E =
1

c2

∂2E

∂t2
and ∇2H =

1

c2

∂2H

∂t2

This is a wave equation for E and H and has solutions of the form

E = E0 sin(k.x− ωt)

ω = ck, k = 2π/λ

The phase is defined as
φ = k.x− ωt

and is an invariant.

For a Galilean transformation from frame S to S ′ we have x′ = x − vt and t′ = t,
thus for x along k:

φ = kx− ωt(
∂x

∂t

)

φ

=
ω

k
= c

k′.x′ − ω′t′ = k.x− ωt

∴ k′.(x− vt)− ω′t = k.x− ωt

∴ k′ = k, ω′ = ω − v.k′ = ω − v.k = ω(1− v.k̂

c
)

where k̂ is the unit vector perpendicular to the wavefront (c.f. Doppler shift). Now
phase velocity in S ′ is

c′ =
ω′

k′
= c− v.k̂ 6= c

For propagation along the common axis,

sin(k′x′ − ω′t′) = sin(kx′ − ω(1− v

c
)t′)

as v → c this equation predicts that an observer chasing the EM wave sees a
field oscillating in space (sinusoidally) but not in time. This is not a solution of
Maxwell’s equations, therefore Maxwell’s equations are not covariant under Galilean
transformations.

2. One solution to this problem was the aether hypothesis, proposed in the latter
half of the nineteenth century. Suppose Maxwell’s equations were true in some
“preferred” frame in which c was a constant and through the “medium” of which



EM waves propagated - the aether. Thus we have the possibility of ABSOLUTE
motion.

Experiments were devised to measure the motion of the Earth relative to the aether
e.g. Michelson and Morley (MM) in 1887 - achieved vrel < 5 kms−1. Best result to
date was achieved using Mössbauer spectroscopy, < 5 cms−1 (Isaak 1970).

The idea behind the MM experiment is to look for interference fringe shifts when a
Michelson interferometer is rotated.

From diagram, t1 is the time taken to reflect from M1, which is moving at u relative
to the aether so for the round trip

t1 =
L

c + u
+

L

c− u

=
2Lc

c2 − u2
which for u << c gives

t1 ∼ 2L

c
(1 +

u2

c2
)

Now let us consider the path perpendicular to the motion relative to the aether.
From diagram t2 is the time to go 2L, so ,

√
L2 +

(
ut2
2

)2

=
ct2
2

L2 +

(
u2

4

)
t22 =

(
c2

4

)
t22

t22 =
4L2

c2 − u2

t2 =
2L/c√

1− u2/c2

Now for small x,
1

(1− x)
1
2

≈ 1 +
1

2
x

so for x = u2/c2, t2 becomes t2 = 2L
c

(1 + u2

2c2
) and the time difference for light

travelling along the two paths becomes

∆t = t1 − t2 =
2L

c

[
1 +

u2

c2

]
− 2L

c

[
1 +

u2

2c2

]
=

Lu2

c3

therefore c∆t = Lu2/c2 = path length difference ∆L.

This will cause a shift in the fringes. In order to get rid of systematic errors the
apparatus is turned through 90◦, which leads to a doubling of the above path
difference.

Therefore for MM experiment, ∆L = 2Lu2/c2, therefore

∆L

λ
= 2(L/λ)(u/c)2

The apparatus can measure a shift of 0.04 fringes ≡ (u/c)2 as small as 10−8. For
Earth velocity around Sun we would get 0.4 fringes - NO SHIFT FOUND!



3. Einstein

Went to school aged 6, got the top grades - folklore wrong! 1888 went to Luitpold
Gymnasium in Munich. Earned highest or next highest marks in maths and Latin
for whole time that he was in school. He didn’t like school, especially teachers! One
report said “he had a natural antipathy for . . . gymnastics and sports . . . he easily
became dizzy and tired”.

He never read “light” literature - always science or the writings of Kant and music.
Aged 12 he read through a book on Euclidean geometry. Went to university in
Zurich in 1896, qualified as a specialist teacher in maths and physics (top grades)
in 1900.

In 1900 he finished his first paper on inter-molecular forces, gained Swiss citizenship
in 1901. He tried for a university position but was turned down. Went to Bern in
1902 to the Federal Patent Office. Published papers whilst there in 1903 and 1904
on the foundations of statistical mechanics. 1905 was a great year for him - Nobel
prize for paper on light quanta, in April he got his Ph.D. from Zurich on K.T. and
the size of molecules, June - special relativity paper. 1906 - specific heats, 1907 -
general relativity.

4. History of Relativity

In 1851 Fizeau performed experiments on light in moving liquids. November 1887
MM experiment -ve result a great disappointment to Kelvin, Rayleigh and Lorentz.

Fitzgerald: “. . . the length of material bodies changes, according as they are moving
through the aether . . . ” N.B. Still aether, not the relative change in L0.

Lorentz said: Aether hypothesis is OK if, in MM experiment, on 90 deg rotation of
the apparatus, L becomes L′ where:

L′ = L(1− v2/2c2)

This is the Lorentz - Fitzgerald contraction, correct to second order in v/c. Lorentz
derived his famous force equation in 1895:

F = q(E + v ∧B)

Einstein knew all this, but not what follows:

1899 Lorentz writes LT to a scale factor ε

1904 Gets it right!

Larmor in 1900 produced LT independently and predicted L-FG contraction.

Poincaré - 1898 article “we have no direct intuition about the equality of two time
intervals”. Didn’t make leap to special relativity. In 1905 he got the transformation
of velocities right.

Einstein 1905 (June) finally stated the two principles of relativity.

5. Einstein’s two postulates of the Special Theory of Relativity.

(1) The laws of physics are the same in all inertial frames



(2) The speed of light in empty space is the same in all inertial frames and is
independent of the motion of its source.

Lecture Two

6. Derivation of the Lorentz Transformation - N.B. Derivation NOT required in Pre-
lims - only result!

Linear transformation. Two frames S and S ′, S ′ moving at speed v along x (neglect
y and z for now) w.r.t. S. What assumptions am I making?

(a) The speed of light is the same in all inertial frames of reference.

(b) The transformation depends only on the relative velocity of the two frames of
reference and is symmetric w.r.t. them.

(c) The transformation is a linear function, involving only first powers of the
coordinates x, x and t, t′ in S and S ′.

Let:

L(v) =

(
A B
C D

)
(1)

(
x′

t′

)
=

(
A B
C D

)(
x
t

)
(2)

x′ = Ax + Bt (3)

t′ = Cx + Dt (4)

Coefficients B and C interrelate x and t and therefore must change sign with v.
Thus

L(−v) =

(
+A −B
−C +D

)

By condition (b)
L(v)L(−v) = 1

therefore
(

A2 −BC −AB + BD
CA−DC −CB + D2

)
=

(
1 0
0 1

)
(5)

A = D (6)

A2 −BC = 1 (7)

The origin of one frame of reference moves with velocity v in the other, so that if
x′ = 0, x = vt. Therefore

Avt + Bt = 0 (8)

B = −Av (9)



Now c is the same in both systems, so

x

t
= c =

x′

t′
(10)

c =
Ax + Bt

Cx + Dt
(eqn 3/eqn 4) (11)

c =
Ac + B

Cc + D
(x = ct) (12)

but A = D and B = −Av, therefore

Ac− Av = Cc2 + Ac (13)

C =
−Av

c2
(14)

but A2 −BC = 1 therefore

A2 − A2v2

c2
= 1 (15)

A2 =
1

1− v2/c2
(16)

therefore

A = D =
1√

1− v2/c2
= γ

and

C =
−v/c2

√
1− v2/c2

=
−γv

c2

let β = v/c, then

L(v) =

(
γ −γv

−γv/c2 γ

)
=

(
γ −cβγ

−γβ/c γ

)

Now replace t by ict and get

L(v) =

(
γ iβγ

−iβγ γ

)
(17)

(
x′

ict′

)
= L(v)

(
x
ict

)
(18)

In this proof we already have L(v)L(−v) = 1 so the transforms are symmetric by
definition! Thus the inverse transform is obtained by swapping primes and writing
−v for v. Exercise - check this!

7. What about y and z? Let

y = αy′ (19)

z = βz′ (20)



Then also we must have, by the relativity principle,

y′ = αy (21)

z′ = βz (22)

Then yy′ = ααy′y, so

α2 = 1 (23)

α = ±1 (24)

β = ±1 (25)

Thus y = y′ and z = z′

8. What about the classical limit? - these transformations must still obey Newton’s
Laws in this situation. Take the limit v ¿ c,

γ = (1− v2/c2)−
1
2 (26)

≈ 1 +
v2

2c2
(27)

therefore to first order in v/c, γ → 1 and

x′ = x− vt (28)

t′ = t− vx

c2
← 0 (29)

t′ = t (30)

Thus we get the Galilean transformations back.

9. Now lets see why I chose to use ict earlier. Imagine in each frame a spherical wave
spreading from the origin, they have the form:

x2 + y2 + z2 − c2t2 = 0 (31)

x′2 + y′2 + z′2 − c2t′2 = 0 (32)

therefore for events on an expanding wavefront

x2 − c2t2 = −(y2 + z2) |x| ≤ ct (33)

x′2 − c2t′2 = −(y′2 + z′2) |x′| ≤ ct′ (34)

y = y′ (35)

z = z′ (36)

x2 − c2t2 = x′2 − c2t′2 (37)

This is an example of invariance in special relativity, the square of the 4-vector is
invariant under Lorentz transformation.

The next section is a mathematical treatment intended to show some
mathematical beauty and consistency in special relativity. It is intended
strictly for those with a mathematical bent and is in no way on the
syllabus. You may safely ignore all of the following section — you have
been warned!



10. Now lets look at the LT again but from a different point of view. If we have a
universal speed, why not talk only in fractions of this, i.e. in terms of v/c? Lets
talk about space and time as one co-ordinate system so that we have:

x1 = x, x2 = y, x3 = z, x4 = ict

Then a rotation in the (x1, x4) plane through an angle θ transforms (x1 . . . x4) →
(x′1 . . . x′4). What is a rotation matrix (ignoring y and z)?

(
x′1
x′4

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x1

x4

)

which when expanded gives

x′ = x cos θ + ict sin θ (38)

ict′ = −x sin θ + ict cos θ (39)

NOT very useful - look at all the
√−1 ! But:

cos iφ = cosh φ (40)

sin iφ = i sinh φ (41)

Therefore replace θ by iφ. Thus

x′ = x cosh φ− ct sinh φ (42)

t′ = −x

c
sinh φ + t cosh φ (43)

or rewriting in x, ict form,
(

x′

ict′

)
=

(
cosh φ i sinh φ
−i sinh φ cosh φ

)(
x
ict

)

where now tanh φ = v/c = β. Then

γ = cosh φ = (1− tanh2 φ)−
1
2 (44)

sinh φ = γ tanh φ = γβ (45)(
x′

ict′

)
=

(
γ iβγ

−iβγ γ

)(
x
ict

)
(46)

The pseudo angle φ represents the rapidity - you can add φs but you can’t add
vs, i.e. rotations add O.K. Thus to transform two velocities v1 and v2 to v use
φ1 + φ2 = φ. Using a trig. relation we have:

tanh(φ1 + φ2) =
tanh φ1 + tanh φ2

1 + tanh φ1 tanh φ2

(47)

v1

c
= tanh φ1 (48)

v

c
= tanh φ = tanh(φ1 + φ2) (49)

v

c
=

v1/c + v2/c

1 + v1v2/c2
(50)

v =
v1 + v2

1 + v1v2/c2
(51)



which is the relativistic transformation of velocities - check in a text book. Let’s
look at φ for a moment,

φ = tanh−1(v/c)

φ is continuous, differentiable, strictly monotonic, is equal to 0 when v = 0 and
tends to ∞ as v → c and −∞ as v → −c. We can therefore convert from speeds to
rapidities - which are simply additive.

We’ll come back to the addition of velocities later in the lecture course.


