
HRTEM image of a 6.4 nm AlGaAs/InGaAs
strained layer heterostructure
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MBE Growth ChamberMBE Growth Chamber •Growth, preparation and 
loadlock chambers

•Stainless steel
•Copper gasket seals

•Ion, turbo- and 
cryopumps
•LN2 cryoshield (400L/day)

•Very long bakes at 200oC
•Outgassing of sources
•Outgassing of substrates

•Ultra-high vacuum
•10-11mbar total 

•Pressure of impurities 
•10–15 mbar 

•Growth of thick layers to 
bury contamination – up to 
6 months to clean up.



Production MBE SystemProduction MBE System
VG VG SemiconSemicon V150V150

•Launched 1999

•Automated

•Simultaneous 
growth on four 6 
inch wafers

•20,000 6 inch 
wafers per year 

•Laser diodes, 
LEDs, HBTs, 
PHEMTs

•Cost £2M

VG Semicon



)101(2x4 pattern          direction

RHEED OscillationsRHEED Oscillations
(Observation of growth monolayer by monolayer)(Observation of growth monolayer by monolayer)

8s

GaAs 1μm/hr

AlAs 0.5μm/hr

AlGaAs
1.5μm/hr



MOCVD Growth SystemMOCVD Growth System

• Chemical reaction of elements 
bonded in volatile organic 
compounds

• e.g.   (CH3)3Ga + AsH3 →
GaAs + 3CH4

• Reaction takes place on a heated 
substrate and growth is also 
‘epitaxial’



strain due to lattice mismatchstrain due to lattice mismatch
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Type I: straddling
eg In0.53Ga0.47As-InP

Heterostructure band alignmentHeterostructure band alignment

Type II:  staggered 
eg InP-In0.52Al0.48As

Type III:
broken gap
eg InAs-GaSb

These examples of band alignment show how 
the potential barrier across a pn junction 
may be increased (Type I), electronic states 
can be made "spatially indirect" (Type II), 
or semi-metallic behaviour can be produced 
due to overlapping conduction and valence 
bands (Type III).



A single heterojunctionA single heterojunction
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A single heterojunctionA single heterojunction
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A perfect junction?A perfect junction?

High Resolution TEM GaAs/AlGaAs
interface (T Walther, Materials)

TEM of GaAs/AlGaAs 2DEG 
structure with superlattice
buffer (W M Stobbs, Materials)

GaAs

AlGaAs

GaAs

2.5nm AlGaAs
/2.5nm GaAs
superlattice

2DEG



Quantum Well Quantum Well -- Type IType I

Typical Materials: 1:  GaAs
(Eg = 1.5 eV)

2: (Al0.35Ga0.65)As
(Eg = 2.0 eV)

Energy levels are quantized in 
z-direction with values En for 
both electrons and holes ∴

E  =  En + =2k⊥2/2m*       
↑ ↑

1-D 2-D
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particle in a finite potential wellparticle in a finite potential well

The continuity conditions at the interfaces are 

that  ψ and             should be continuous.1 ∂ψ
m  ∂x
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Density of StatesDensity of States

Travelling waves
eikx (eik.r)

Periodic boundary conditions
ψ(x) = ψ(x + L)

∴ eikL = 1    → k = ±2nπ/L
→ δk = 2π/L

ε = =2k2/2m*,
dε = (=2/2m*) 2k dk

g(k)dk g(ε)dε
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Quantum well lasersQuantum well lasers



Band structure engineering of a 
quantum well laser

Band structure engineering of a 
quantum well laser


