Semiconductor Heterojunctions

HRTEM image of a 6.4 nm AlGaAs/InGaAs strained layer heterostructure

Energy gap vs lattice parameter

MBE Growth Chamber

- •Growth, preparation and loadlock chambers
 - Stainless steel
 - Copper gasket seals
- •lon, turbo- and cryopumps
- •LN₂ cryoshield (400L/day)
- •Very long bakes at 200°C
- Outgassing of sources
- Outgassing of substrates
- •Ultra-high vacuum
 - •10⁻¹¹mbar total
- Pressure of impurities
 - •10⁻¹⁵ mbar
- Growth of thick layers to bury contamination – up to
 6 months to clean up.

Production MBE System

VG Semicon V150

- •Launched 1999
- Automated
- •Simultaneous growth on four 6 inch wafers
- •20,000 6 inch wafers per year
- Laser diodes,LEDs, HBTs,PHEMTs
- Cost £2M

RHEED Oscillations

(Observation of growth monolayer by monolayer)

2x4 pattern $(\bar{1}10)$ direction

MOCVD Growth System

 Chemical reaction of elements bonded in volatile organic compounds

• e.g.
$$(CH_3)_3Ga + AsH_3 \rightarrow GaAs + 3CH_4$$

 Reaction takes place on a heated substrate and growth is also 'epitaxial'

strain due to lattice mismatch

Energy band offsets

Electron affinity χ : Energy required to remove an electron from the conduction band and take it to the vacuum.

$$\Delta E_C = \chi^1 - \chi^2$$

$$\Delta E_V = E_G^1 - E_G^2 - \Delta E_C$$

Heterostructure band alignment

These examples of band alignment show how the potential barrier across a *pn* junction may be increased (Type I), electronic states can be made "spatially indirect" (Type II), or semi-metallic behaviour can be produced due to overlapping conduction and valence bands (Type III).

A single heterojunction

energy bands

wavefunctions

A single heterojunction

$$\mathfrak{I} = \frac{N_s e}{\varepsilon_0 \varepsilon_r}$$
 and for $z > 0$ for a triangular well:

 $\varphi(z) = -\Im z$ so solving Schrodinger's equation gives:

$$E_{n} = -\left(\frac{e^{2}\mathfrak{I}^{2}\hbar^{2}}{2m^{*}}\right)^{1/3}a_{n}$$

$$a_n \cong -\left[\frac{3\pi}{2}(n+3/4)\right]^{2/3}, \qquad n=0,1,\dots$$

$$E_n \cong \left(\frac{\hbar^2}{2m^*}\right)^{1/3} \left[\frac{3\pi e \Im}{2} (n+3/4)\right]^{2/3}$$
 and eliminating \Im

$$E_0 \cong \left(\frac{\hbar^2}{2m^*}\right)^{1/3} \left(\frac{9\pi e^2 N_s}{8\varepsilon_0 \varepsilon_r}\right)^{2/3}$$

A perfect junction?

High Resolution TEM GaAs/AlGaAs interface (T Walther, Materials)

TEM of GaAs/AlGaAs 2DEG structure with superlattice buffer (W M Stobbs, Materials)

Quantum Well - Type I

Typical Materials:

1: GaAs 2: $(Al_{0.35}Ga_{0.65})As$ $(E_g = 1.5 \text{ eV})$ $(E_g = 2.0 \text{ eV})$

Energy levels are quantized in z-direction with values E_n for both electrons and holes \therefore

$$E = E_n + \hbar^2 k_{\perp}^2 / 2m^*$$

$$\uparrow \qquad \uparrow$$

$$1-D \qquad 2-D$$

particle in a finite potential well

 $\psi_n(x) = A \cos kx$

The continuity conditions at the interfaces are that ψ and $\frac{1}{m} \frac{\partial \psi}{\partial x}$ should be continuous.

for |x| < w/2

for x < -w/2

$$= B \exp\left[-K\left(x - \frac{w}{2}\right)\right] \qquad for \ x > w/2$$

$$= B \exp\left[-K\left(x - \frac{w}{2}\right)\right] \qquad for \ x > w/2$$

$$= B \exp\left[+K\left(x + \frac{w}{2}\right)\right] \qquad for \ x < -w/2$$

$$= B \exp\left[+K\left(x + \frac{w}{2}\right)\right] \qquad for \ x < -w/2$$

$$= A \sin kx \qquad for \ |x| < w/2$$

$$= B \exp\left[-K\left(x - \frac{w}{2}\right)\right] \qquad for \ x > w/2$$

 $=B\exp\left[+K\left(x+\frac{w}{2}\right)\right]$

Eigenvalues for finite potential well

$$A\cos\left(\frac{kw}{2}\right) = B$$

$$\frac{k}{m_w} A \sin\left(\frac{kw}{2}\right) = \frac{KB}{m_h}$$

$$\therefore \frac{k}{m_{w}} \tan \left(\frac{kw}{2}\right) = \frac{K}{m_{b}}$$

$$A\sin\left(\frac{kw}{2}\right) = B$$

$$\frac{k}{m_w}A\cos\left(\frac{kw}{2}\right) = -\frac{KB}{m_h}$$

$$\therefore \frac{k}{m_{w}} \cot\left(\frac{kw}{2}\right) = -\frac{K}{m_{b}}$$

$$m_w \neq m_b$$

$$\cos\frac{kw}{2} = \frac{k}{k_0} \qquad \text{for} \quad \tan(\frac{kw}{2}) > 0$$

$$\sin\frac{kw}{2} = \frac{k}{k_0} \qquad \text{for} \quad \tan(\frac{kw}{2}) < 0$$

$$k_0^2 = \frac{2mV_0}{\hbar^2}$$

$$m_w = m_b$$

Density of States

g(k)dk

 $g(\varepsilon)d\varepsilon$

$$\frac{4\pi k^2 dk}{\left(2\pi/L\right)^3}$$

$$\frac{4\pi k^2 dk}{(2\pi/L)^3} \qquad \frac{V}{(2\pi)^2} \left(\frac{2m^*}{\hbar^2}\right)^{3/2} \varepsilon^{1/2} d\varepsilon$$

Travelling waves e^{ikx} ($e^{ik.r}$)

Periodic boundary conditions

$$\psi(x) = \psi(x + L)$$

$$\therefore e^{ikL} = 1 \rightarrow k = \pm 2n\pi/L$$

$$\rightarrow \delta k = 2\pi/L$$

$$\varepsilon = \hbar^2 k^2 / 2m^*,$$

$$d\varepsilon = (\hbar^2 / 2m^*) 2k dk$$

$$\frac{2\pi k \ dk}{\left(2\pi/L\right)^2}$$

$$\frac{2\pi k \ dk}{(2\pi/L)^2} \qquad \frac{A}{4\pi} \left(\frac{2m^*}{\hbar^2}\right) d\varepsilon$$

1-D

$$\frac{2dk}{2\pi/L}$$

$$\frac{2dk}{2\pi/L} \qquad \frac{L}{2\pi} \left(\frac{2m^*}{\hbar^2}\right)^{1/2} \varepsilon^{-1/2} d\varepsilon$$

Two-dimensional density of states

$$E_n = \frac{\pi^2 \hbar^2 n^2}{2m^* w^2} + \frac{\hbar^2 k_x^2}{2m^*} + \frac{\hbar^2 k_y^2}{2m^*}$$

Quantum well lasers

Band structure engineering of a quantum well laser

