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Semiconductor Devices: Lectures 5&6 
 
12. Semiconductor Heterojunctions 
The semiconductor junctions considered so far have been homojunctions, e.g. Si-Si; we now 
consider the properties of heterojunctions. 
(a) Energy Band Alignment 
Electron affinity χ: Energy required to remove an electron from the conduction band and take 
it to the vacuum 
Work function φ: Energy required to remove an electron from the Fermi energy and take it to 
the vacuum. 
The values of χ and φ are dominated by the bulk cohesion of the atoms, but are affected by the 
surface phenomena: 

• reconstruction, where the surface atoms rearrange in the surface plane  
• relaxation, where the atoms move slightly away from their bulk positions 
• surface electronic states 
• impurities at the surface 
• dipole layer due to charge leakage out of the surface  

The conduction (valence) band offset ΔEC (ΔEV) is the change in the conduction (valence) 
band at the heterojunction. A simple (Anderson’s) rule states that the vacuum levels should 
line up as shown below, so that: 
 
ΔEC = χ1 - χ2 
ΔEV = Eg

1- Eg
2- ΔEC 

 
This rule is often inaccurate as χ contains 
the surface contributions listed above, 
which are different from those at an 
interface. The band offsets can be 
obtained from microscopic bandstructure 
calculations, but for most practical 
purposes they are treated as empirical 
parameters. 
One of the most commonly used 
heterojunctions is that formed by GaAs 
and Ga1-xAlxAs. The bandgap of the latter 
is given approximately by Vegard's law: 
 
 
 
which simply assumes a linear interpolation between the values of the two constituent 
materials. One of the major advantages of this material combination is that the lattice 
parameter of the alloy is very close to that of GaAs for a wide range of x, so that there is very 
little strain at the interface (see (c) below). The band offset ratio ΔEC /ΔEV  is approximately 
60/40. 
 Various types of band  alignment are observed:
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(b) P-N Heterojunction Diode 
 

(a) Energy level structure for the isolated 
semiconductors, the narrower gap material 
being n-type, and the larger gap material 
p-type. 

(b) When the junction is formed the Fermi 
level is the same on both sides, and the 
vacuum level is parallel to the band edges 
and is continuous. The built-in (or contact) 
potential is the sum of the potentials in 
both materials: Vbi=Vb1+Vb2. The depletion 
layer widths are calculated as before, 
except that the boundary condition is no 
longer continuity of electric field E at the 
interface but the displacement, i.e. 
ε1E1=ε2E2: 
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This reverts to the usual expression for a  p-n 
homojunction when ε1=ε2. 

Type I: straddling 
eg In0.53Ga0.47As-InP 

Type III: 
broken gap 
eg InAs-GaSb 

These examples of band alignment show 
how the potential barrier across a pn 
junction may be increased (Type I), 
electronic states can be made "spatially 
indirect" (Type II), or semi-metallic 
behaviour can be produced due to 
overlapping conduction and valence bands 
(Type III). 

Type II:  staggered  
 eg InP-In0.52Al0.48As 
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In the heterojunction bipolar transistor shown below the wider gap material forming the 
emitter is n-type, while the base-collector junction is homotype. There are several important 
potential advantages of this device: 
(i) higher emitter efficiency (larger β) 
due to the base-emitter hole current 
being reduced due to the enhanced 
potential barrier, (ii) reduced base 
resistance since the base can now be 
heavily doped, (iii) frequency response 
is better because of (i) and (ii). 
 
 
(c) Strain due to lattice mismatch: e.g. InxGa1-xAs/GaAs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  (a) Separate layers in equilibrium; (b) Thin layer of InxGa1-xAs on GaAs; (c) Thicker layer of InxGa1-xAs  
 
(a) In equilibrium, InxGa1-xAs has a larger lattice constant than GaAs. The GaAs substrate is 
so thick that it can not be significantly distorted. In (b), the InxGa1-xAs layer is thin, so it 
strains to conform to the lattice constant of the GaAs in the plane of the heterojunction. In (c), 
the strain has relaxed due to a misfit dislocation at the heterointerface, shown by an asterisk. 
This releases the elastic energy, which is proportional to the thickness. 

Strain can be highly beneficial in devices. It can re-inforce the changes in 
bandstructure and so controls ΔEC and ΔEV  which need to be as large as possible. Strained-
layer lasers have a low threshold current and high efficiency for electrical → optical power 
conversion. Strain has a pronounced effect on valence band states: the hole mass can be made 
significantly lighter so that the hole mobility is enhanced. 
 
13. Quantum Well Structures 
 
As the active layer thickness in a double heterostructure becomes close to the electron de-
Broglie wavelength (about 10nm for GaAs) quantum effects become apparent. Quatum wells 
are important in many device applications, e.g. semiconductor lasers - where the wavelength 
of the emitted light can be controlled through adjustment of the energy levels within the well 
by selecting the well width: 
 
 

*
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Solving the Schrödinger equation for a quantum well with finite potential obtains values of the 
energy levels within the well:  

 
 
for |x|<w/2
  
 

 
 
      for |x|>w/2 
 
 

The continuity conditions at the interfaces are that  ψn 

and 
xm ∂

∂ψ1  should be continuous (the latter condition 

includes the effective mass in order that particle 
current is continuous).  
Then: 
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The equations can be solved numerically or graphically. However, in the limit of mw=mb the 
solution simplifies to: 
  
 
 
 
 
 
 

where 
2

02
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2mV
k = .  The number of bound states is:  so that there is  

always one bound state. 
 

 
 
 

There is a very familiar limiting case, viz. 
infinitely high potential barriers, V0 →∞, 
k0→∞ ; then there are an infinite number 
of bound states of the form:  

 ψ  ~ sin(kx)  

with k=nπ/w. The total  energy for the nth 
level in an infinitely deep quantum well is: 
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The two-dimensional density of states per 
unit area per unit energy, N(E), is given 
by: 
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The density of states per unit area n2d : 
∑=

j
dj2d2 nn  

where, for the jth subband, 
 
 
 
 
c.f. 3D nondegenerate system, i.e. high T and low 
doping levels, 

 
 
 
 
 
 
 
 
 
 
 
 
14. Quantum Wires and Quantum Dots 
So far we have considered spatial confinement in one 
direction. However, it is also possible to produce 
semiconductor structures that are confined in two and 
three directions. Consider a quantum wire with square 
cross-section a confined within infinite potential 
barriers; the energy states are: 

 
 

 
 

 
Given that      the density of states per unit area per unit energy is:  
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Similarly the energy levels of a cubic quantum box or dot are: 
 
 
 
 

Such a structure is analogous to an artificial atom with discrete energy levels, i.e. the electrons 
are totally confined, and the density of states is: 

 
 
 

Semiconductor quantum wires and dots give enhanced radiative electron-hole 
recombination: this can be seen as arising from the strong wavefunction overlap. Lasers with 
threshold currents <1mA have been produced, more than an order of magnitude improvement 
over quantum well lasers. 

Mesoscopic effects occur in low dimensional structures. These are anomalies, e.g. 
large fluctuations, in transport properties observed at low temperatures, due to the discrete 
charge on an electron. These effects are associated with the intrinsically small size of the 
structure, which only contains a few carriers, e.g: Coulomb Blockade - electrostatic energy 
required to add one electron to a quantum dot is e2/(2C) where C is dot capacitance, this can 
easily exceed kBT at low temperatures, and indeed even at room temperature with a 
nanometre-sized dot (see section 16 on SETs). 
 
15. Modulation Doping: MODFET 
Doping semiconductors to 
introduce carriers has the 
major disadvantage that the 
charged donors or acceptors 
scatter the carriers through 
their Coulomb interaction. 
This scattering reduces the 
mobility and (lifetime) 
broadens energy levels. The 
reduced coherence is serious 
in quantum devices which 
require the interference 
between electron waves.  

The solution to this problem is modulation doping where impurities are placed in the 
barrier region, but the carriers migrate to the quantum confined region. In this example 
electrons transfer from donors in the AlGaAs barrier to the GaAs layer until equilibrium is 
reached. The carriers are now in a high purity region, remote from the ionised donors. This 
effect can be further enhanced by introducing an undoped spacer layer in the barrier between 
the doped region and the interface. In the example shown electrons are confined in a narrow 
region close to the interface, i.e. they are spatially confined, and so form a two-dimensional 
electron system (2DES). The confining potential is approximately a triangular quantum well, 
and assuming that the AlGaAs potential barrier is infinite, the eigenvalues are: 

 
 
     
 
 

where F is the electric field on the GaAs side of the interface. 
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The very high electron mobilities that can be obtained by modulation doping are used in FETs 
and BJTs to enhance their speed. A schematic modulation doped FET (MODFET) structure is 
shown below. Electron transport occurs through the 2DES, and is controlled by the gate 
voltage. The combination of short channel length (~100nm) and high mobility (~100m2V-1s-1) 
allows switching speeds of >1THz to be obtained. The optimum material at present is 
AlInAs/InGaAs. 
 

 
 
Structures similar to this one are used to study low temperature magneto-transport properties 
of electrons in two-dimensional systems. With very thick spacer layers ~300nm, mobilities 
~2x104m2V-1s-1 can be achieved. The quantum Hall effect and fractional quantum Hall effect 
are observed when a strong magnetic field is applied normal to the 2 DES. 
 
16. Single Electron Transistor  (SET) 
As the size of transistors continues to shrink, a question naturally arises: will the quantum 
nature of electrons become important in determining how the devices are built? In other 
words, what will happen when a transistor is reduced to the size of a few atoms or a single 
molecule? The single-electron transistor is such a device that exploits quantum tunnelling to 
control and measure the movement of single electrons. Charge does not flow continuously in 
this device but in a quantized way. Consequently, SETs have potential for very high density 
data storage. 

When a capacitor is charged through a resistor, the charge on the capacitor is 
proportional to the applied voltage and shows no sign of quantization. When a tunnel junction 
replaces the resistor, a conducting island is formed between the junction and the capacitor 
plate. In this case the average charge on the island increases in steps as the voltage is 
increased. The steps are sharper for more resistive barriers and at lower temperatures: 

gate (Schottky) 
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The single-electron tunnelling (SET) transistor consists of a gate electrode that 
electrostatically influences electrons travelling between the source and drain electrodes. 
However, the electrons in the SET transistor need to cross two tunnel junctions that form an 

isolated conducting electrode or "island" (or 
quantum dot). The source, drain and island are 
usually obtained by "cutting" regions in the 
2DES formed at the interface between GaAs 
and AlGaAs. The conducting regions are 
defined by metallic electrodes patterned on the 
top semiconducting layer. Negative voltages 
applied to these electrodes deplete the electron 
gas just beneath them, and the depleted 
regions can be made sufficiently narrow to 
allow tunnelling between the source, island 
and drain. Moreover, the electrode that shapes 
the island can be used as the gate electrode. 

Electrons passing through the island charge and discharge it, and the relative energies of 
systems containing 0 or 1 extra electrons depends on the gate voltage. At a low source-drain 
voltage, a current will only flow through the SET transistor if these two charge configurations 
have the same energy. 
 The current flowing in a single-electron transistor increases with the bias voltage 
between the source and drain, and varies periodically with the gate voltage. For low bias 
voltages, current flows when the charge on the gate capacitor is a half-integer multiple of e, 

but is suppressed for integer multiples of e. 
Each time an electron is added to the gate, an 
electron tunnels into the island, which sets 
the field in the gate capacitor back to its 
initial value. Peaks in the conductance are 
observed for half-integer multiples of e, and 
minima are seen at integer multiples of e. For 
bias voltages larger than e/C, conduction 
occurs independently of the gate voltage. 
 


