Vibrations in a Solid

Consider displacements 6 from equilibrium:

md = A8, ., — 6, )+ A(6, , — 6,)

+ weaker terms ~ (6n Ly~ 6n)

Insoluble coupled problem — Try normal mode
approach:
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Therefore:
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For long wavelengths, k 1s small,
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Consider a transverse acoustic wave:
SCx) = 6Oelk$

1kna

Ocna) = (506 for atom n

Moveby 1 RLV. k> k + G
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From the above picture we see that where it
MATTERS no change has occurred.



Phonons

Quantize the energy to give:
1
E(w) = (nkS n 5)}1% (k)

Where n,, 1s the excitation number of a normal mode
s. These are phonons 1.e. there are n, . phonons of
type s with wavevector k present in the crystal.

Measured by Neutron Scattering
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Phonon energy (meV)
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(a) Measured vibrational spectrum of b.c.c. Na at 90 K. Modes
which are longitudinal and transverse are marked L and T. (b) The lines where
g is measured are shown on the Brillouin zone. (After A. D. B. Woods ef al.,

Phys. Rev. 128, 1112 (1962).)
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Measured vibrational spectrum Aw(g) for various directions in
the zone of f.c.c. Ne at 4.7 K (after J. A. Leake et al., Phys. Rev. 181: 125 (1 969)).
The lines of g depicted are shown in a Brillouin zone, with conventional lettering.

q is given in units of 2z/a
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Allowed values of k for excitations

The effect of the size of the specimen:
Photons 1n a metal box E//=0 (@ walls
Electrons 1n a potl. well U=0 (@ edges
Lattice vibrations 1n a solid:

Either Or

No displacement at edge No force at edge
6=0Q@zx=0

§=0Qzx=1L j—iZO@xZO
Try 6 = sinkx & =1
.0 =sinklL Try 6 = coskx
S kL = nw then 0 = sinkL
& |k=nn/L and again

(n = 0 or +ve integer) k=nm/L




In Three Dimensions: L
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Volume of k-space permitted for one & point 1s:
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Therefore k-space density of states 1s:

Vv

— +ve octant only
3

Therefore number of states between k£ and k+dEk 1s:

2
dnk?dk Vo %kzdk

8 o 27

N.B. This is an entirely general result



What happens when we transform to frequency?

The number of allowed values of k for which the
phonon frequency i1s between w and w+dw 1s:

Let d.S, be an element of area on a surface of
constant w, then:

[ &’k = [ds.dk,

shell

Where d£, 1s the perpendicular distance between the
surface of constant w and w+dw. Now:

dw = |V, w|dk,

(by the definition of grad), therefore:

& ‘ka‘d/ﬁ = v, = group velocity

(which can be zero!)



Vibrational Specific Heat

Classical equipartition (when valid):

N atoms 3N vibrational modes

Dulong & Petit (high T limit):

E = kT /mode
- Oy = 3Nk

Einstein Model

All 3N modes of one frequency n, and use Bose-

Einstein statistics ( ).
— hv
E=3N
ehu/kBT 1
2 AN
CV:3NkB[h”] A
kT (ehu/kBT _ 1)



Debye Model

Deals well with acoustic modes, exact at low 7,
pretty good at intermediate 7T, OK at high T.

Assumptions:

1. E'vs k for acoustic modes — take linear
approximation always (w= kv, .4)

2. Density 1n k-space — max. frequency

Number of modes between £ and £ + dk is:
V

o

k*dk

Which in the Debye approximation becomes:

Vo 3w’
272 1183

D(w) =

In total there are 3N modes, therefore:

3V wmax 2
3N = 523 f w dw
S
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Here are typical values of ¢, for real materials:

6g,= 150 K for Na
1860 K for C (diamond)
230 K for Ca
625 K for S1
88 K for Pb
3 Assumed
4_
>
Q
QC:) L W= kvsound
=, — True
s

Wavevector k

= Debye
E Model

Frequency w  “b



S R
o3 .
b
o ou | e
g 13 14 15 :
=
3 N ;
3 ot s '
= -, s
wy . . . .
4! - .- ‘hﬂwﬁj
'..\ &
; v\ﬁ.-'—yf
1 o
'n'.
A0t
/ | 4 ] )
0 4 8 12 16

Fuw (mev)

Figure 3.12 Density of modes in Na (after A. E. Dixon et al., Proc. Phys. Soc.

81, 973 (1963)). The arrows indicate critical points—which correspond to

points of zero siope in figure 3.11. (For example, the lowest critical point at

4 eV corresponds to the lowest branch at N in figure 3.11. The maximum energy

15.5 meV is also due to a mode at N, the high peak in S just below this due to

the fiat branch on the zone face N — G > H. H is also a critical point for this
upper branch.}



Superconductivity

What defines the superconducting
state?

* Complete loss of resistance at a
finite temperature

(discovered by Kamerlingh Onnes at the
University of Leiden in 1908)

* Perfect diamagnetism — the
Meissner-Ochsenfeld effect

(discovered 1n 1933 by Meissner and
Ochsenfeld)




Zero Resistance
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Magnetic Behaviour of a Perfect Conductor
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Magnetic Behaviour of a Superconductor

r
-
o

=0 \% Room ‘ .
\ temperature

(a)

|
® Cooled
Low
B | 4
4 @ 1 temperature ® ' B




Magnetization and the Critical Field
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Phase diagram of a superconductor, showing variation with

temperature of the critical magnetic field.
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Bardeen-Cooper-Schreiffer Theory

Any successful microscopic theory of
superconductivity has to explain the following:

1) SC is bound up with some profound change
in the behaviour of the conduction electrons,
marked by the appearance of long range
order and a gap in their energy spectrum ~
104 eV.

2) The xtal. lattice must play a very important
part in establishing SC because T, depends
upon the atomic mass (i1sotope effect).

3) The SC — normal transition is a 2" order
phase change




Flux Quantization

Any magnetic flux within a superconductor

only exists as multiples of a quantum, the
fluxon, ¢, given by:

®, = h/2 =2.07x10"" Wb

The 2e 1n the denominator 1is strong evidence

That the supercurrent 1s carried by pairs of
electrons.

Use? Superconducting Quantum Interference Device

(a) (b)

Critical
current Quantum interferometer. (a) No applied magnetic field.
f (b) With applied magnetic field.
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