
Vibrations in a Solid
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Insoluble coupled problem – Try normal mode 

approach:
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Consider a transverse acoustic wave:
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From the above picture we see that where it 

MATTERS no change has occurred.



Phonons

Quantize the energy to give:
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Where n
ks is the excitation number of a normal mode 

s. These are phonons i.e. there are n
ks phonons of 

type s with wavevector k present in the crystal.

Measured by Neutron Scattering
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Allowed values of k for excitations

The effect of the size of the specimen:

Photons in a metal box E// = 0  @ walls

Electrons in a potl. well � = 0  @ edges

Lattice vibrations in a solid:

Either Or

No displacement at edge No force at edge
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In Three Dimensions: L
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Volume of k-space permitted for one k point is:
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N.B. This is an entirely general result



What happens when we transform to frequency?

The number of allowed values of k for which the 

phonon frequency is between � and �+d� is:
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Vibrational Specific Heat

Classical equipartition (when valid):

N atoms 3N vibrational modes

Dulong & Petit (high T limit):
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Einstein Model

All 3N modes of one frequency n, and use Bose-

Einstein statistics (good for optical modes).
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Debye Model

Deals well with acoustic modes, exact at low T, 

pretty good at intermediate T, OK at high T.

Assumptions:

1. E vs k for acoustic modes – take linear

approximation always (��= kv
sound

)

2. Density in k-space – max. frequency

Number of modes between k and k + dk is:
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Here are typical values of �
D
for real materials:

�
D
= 150 K for Na

1860 K for C (diamond)

230 K for Ca

625 K for Si

88 K for Pb
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What defines the superconducting

state?

Superconductivity

• Complete loss of resistance at a 

finite temperature

(discovered by Kamerlingh Onnes at the 

University of Leiden in 1908)

• Perfect diamagnetism – the 

Meissner-Ochsenfeld effect

(discovered in 1933 by Meissner and 

Ochsenfeld)



Zero Resistance



Magnetic Behaviour of a Perfect Conductor



Magnetic Behaviour of a Superconductor



Magnetization and the Critical Field



Bardeen-Cooper-Schreiffer Theory
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Any successful microscopic theory of 

superconductivity has to explain the following:

1) SC is bound up with some profound change 

in the behaviour of the conduction electrons, 

marked by the appearance of long range 

order and a gap in their energy spectrum ~ 

10-4 eV.

2) The xtal. lattice must play a very important 

part in establishing SC because T
c
depends 

upon the atomic mass (isotope effect).

3) The SC – normal transition is a 2nd order 

phase change



Flux Quantization

Any magnetic flux within a superconductor 

only exists as multiples of a quantum, the 
fluxon, �

0
, given by:
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The 2e in the denominator is strong evidence

That the supercurrent is carried by pairs of

electrons.

Use? Superconducting Quantum Interference Device


