
Lecture 3 - Digital Communication and Storage I

In this lecture I’m going to look at how signals from a range of inputs, be it voice,

video, audio etc. can be converted so that they may be transmitted digitally along an

optical fibre network. Optoelectronic communication is reliable and economical; commu-

nication technology is playing an increasingly important role in our lives. For example,

important discussions now mostly communicated face to face in meetings or conferences,

often requiring travel, are increasingly using “teleconferencing”. Similarly teleshopping

and telebanking will provide services by electronic communication, and the Internet relies

completely on fibre technology for its long distance links.

Figure 3.1 shows three examples of communication systems. A typical communica-

tion system can be modelled as shown in figure 3.2. The components of a communication

system are as follows:

The source originates a message. If the data is non-electrical (human voice etc.), it must

be converted by an input transducer into an electrical waveform referred to as the

baseband signal or message signal.

The transmitter modifies the baseband signal for efficient transmission.

The channel is a medium—such as a wire, coaxial cable, waveguide or optical fibre—

through which the transmitter output is sent.

The receiver reprocesses the signal received from the channel. The receiver output is

fed to the output transducer, which converts the electrical signal back to its original

form—the message.

The destination is the unit to which the message is communicated.

The channel can filter, attenuate and distort the signal. The signal attenuation

increases with the length of the channel. The waveform is distorted because of different

amounts of attenuation and phase shift suffered by different frequency components of the

signal. This might be the rounding of a square pulse, for example. This type of distortion

is known as linear distortion and can be partly corrected at the receiver. The channel

may also cause non-linear distortion through attenuation that varies with the signal

amplitude. Such distortion may also be partly corrected by the receiver. The signal is

also contaminated by undesirable signals lumped under the broad term noise, which are

random and unpredictable signals from causes both external and internal. External noise

might include interference from nearby channels, faulty equipment, radiation, storms etc.

Internal noise results from thermal motion of electrons in conductors, random emission
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and diffusion or recombination of charged carriers in electronic devices. Noise can be

reduced but not eliminated. It is one of the basic factors that sets limits on the rate of

communication.

The signal to noise ratio (SNR) is defined as the ratio of signal power to noise

power. The channel distorts the signal, and noise accumulates along the path. Worse

yet, the signal strength decreases while the noise level increases with distance from the

transmitter. Thus the SNR is continuously decreasing along the length of the channel.

Amplifiers will increase both the signal and the noise, and may indeed introduce more

noise of their own.

1 Analogue and Digital Messages

Messages are either digital or analogue. A digital message may be constructed using a

number of discrete symbols (e.g. 26 letter of the alphabet). The most important number

used is 2, as in binary. Analogue messages, on the other hand, are characterized by data

whose values vary over a continuous range. A speech waveform has amplitudes that vary

over such a range. Over a given time interval, an infinite number of possible different

speech waveforms exist, in contrast to only a finite number of possible digital messages.

1.1 Noise Immunity of Digital Signals

Digital messages are transmitted by using a finite set of electrical or optical waveforms.

The task of a receiver is to extract a message from a distorted and noisy signal at the

channel output. Message extraction is often easier from digital signals than from ana-

logue signals. Consider the binary case of two signals encoded as rectangular pulses of

amplitudes A/2 and −A/2. The receiver only has to decide between two possible pulses

received, not on the details of the pulse shape. This decision can be made with reasonable

certainty even if the pulses are distorted and noisy (see figure 3.3). The digital message

in figure 3.3(a) is is distorted (figure 3.3(b)) and noise is added(figure 3.3(c)). The data

can be recovered as long as the distortion and noise are within limits, because we only

need to make a simple binary decision as to whether the pulse is positive or negative.

Analogue systems are sensitive to even small amounts of distortion or noise, and hence

a digital communication system is more rugged and an analogue one in the sense that it

can better withstand noise and distortion.
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Figure 3.3 (a) Transmitted signal. (b) Received distorted signal (without noise). 
(c) Received distorted signal (with noise). (d) Regenerated signal (delayed).

Figure 3.4 Analogue-to-digital conversion of a signal.



1.2 Regenerative Repeaters in Digital Communication

The main reason for the superiority of digital systems over analogue ones is the viability

of regenerative repeaters in the former. Repeater stations are placed close enough

together in a channel to ensure that noise and distortion remain within set limits. At

each station the incoming pulses are detected and new clean pulses are transmitted to the

next repeater station, thus preventing the accumulation of noise and distortion along the

channel. Messages can thus be transmitted over long distances with great accuracy. As

mentioned earlier, this is impossible for analogue signals, where the signal degrades and

the noise increases with each amplification stage. The advent of optical fibre technology,

coupled with cheap digital circuitry, has lead to almost all new communication systems

being digital installations.

1.3 Analogue to Digital (A/D) Conversion

In order to transmit analogue signals digitally they need to be converted. The frequency

spectrum of a signal indicates the relative magnitudes of various frequency components.

The Nyquist or sampling theorem (proved later) states that if the highest frequency

in the signal spectrum is B (in hertz), the signal can be reconstructed from its samples,

taken at a rate not less than 2B samples per second. This means that in order to transmit

the information in a continuous-time signal, we need only transmit its samples (figure

3.4). The sample values then need to be digitised or quantised where each sample is

approximated or rounded off to the nearest quantised level. Amplitudes of the signal

m(t) lie in the range (−mp,mp), which is partitioned into L intervals, each of magnitude

∆v = 2mp/L. Each sample amplitude is approximated to the midpoint of the interval in

which the sample value falls. The information is thus digitised to one of L levels. The

accuracy of the quantised signal can be improved by increasing the number of levels L.

For voice only, L = 16 is sufficient. For commercial use, L = 32 is a minimum, and

for telecommunication, L = 128 or 256 is commonly used. One way of transmitting the

digitised signals would be to transmit each of the L values as a discrete voltage. The

second, and preferred alternative is to use binary transmission, where the number of bits

is chosen to at least match the quantisation levels (more may be used if error checking is

included). The binary case is so important because of its simplicity and ease of detection.

Virtually all digital communication today is binary. This scheme of transmitting data by

digitising and then using pulse codes to transmit the digitised data is known as pulse
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code modulation (PCM).

When considering a distorted binary signal, such as that shown in figure 3.3,

then if A is sufficiently large compared to typical noise amplitudes, the receiver can

still distinguish correctly between the two pulses. If the pulse amplitude is ∼ 5 − 10

times the noise amplitude, the probability of error at the receiver is less than 10−6. The

effect of random channel noise and distortion is thus practically eliminated. One error or

uncertainty in the signal still remains however, quantisation noise. This can be reduced by

increasing L, the penalty for this is paid in terms of increased bandwidth of transmission.

Although PCM was invented by P.M. Rainey in 1926 and rediscovered by A.H.

Reeves in 1939, it was not until the early sixties that Bell Laboratories installed the first

communication link using PCM. It was the transistor that made PCM practicable.

1.4 Signal-to-Noise Ratio and Channel Bandwidth

The bandwidth B of a channel is the range of frequencies that it can transmit with

reasonable fidelity. The number of pulses per second that can be transmitted over a

channel is directly proportional to its bandwidth.

The signal power S plays a dual role in information transmission. First, S

is related to the quality of transmission. Increasing S reduces the effect of channel

noise. A larger signal-to-noise ratio (SNR) also allows transmission over a longer distance.

Thus a certain minimum SNR is necessary for communication. The second role of the

signal power relies on the fact that the channel bandwidth B and the signal power S are

interrelated. Thus one may reduce the requirement for S by increasing B, and vice-versa.

The rigorous proof of this statement is beyond the scope of this lecture course, but may

be found in chapter 15 of Lathi. Since SNR is proportional to S, we can also say that SNR

and bandwidth are exchangeable. The exact relation is that, to transmit information at

a given channel bandwidth B1 and signal-to-noise ratio SNR1, then the same information

can be transmitted over a channel bandwidth B2 with signal-to-noise ratio SNR2, when

SNR2 ' SNR
B1/B2

1

Therefore, a relatively small increase in channel bandwidth buys a large advantage in

terms of reduced transmission power. This is an upper bound, and in real systems the

performance is usually much worse. PCM, however, comes close (within 10dB) to realising

this performance.
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The limitation imposed on communication by the channel bandwidth and the

SNR is highlighted by an equation derived by Shannon relating the rate of error-free

information transmission per second C to the bandwidth B and the SNR. The equation

is

C = B log2(1 + SNR) bit/s

If there were no noise on the channel (SNR = ∞) then C = ∞, and communication

would cease to be a problem. Of course a new limit on C would then appear, related to

the accuracy with which signal levels could be determined.

1.5 Simultaneous Transmission of Several Signals

If several audio signals are to be transmitted simultaneously then the sensible (and prac-

tical) solution is to add these signals as sidebands on multiple carrier waves (either AM

or FM). If the various carriers are chosen sufficiently far apart in frequency, the spectra of

the modulated signals will not overlap and thus will not interfere with each other. At the

receiver one can use a tunable bandpass filter to select the desired station or signal. This

method of transmitting several signals simultaneously is known as frequency-division

multiplexing (FDM). here the bandwidth of the channel is shared by various signals

without any overlapping.

Another method of multiplexing several signals is known as time-division mul-

tiplexing (TDM). This method is suitable when a signal is in the form of a pulse train

(as in PCM). The pulses are made narrower, and the spaces that are left between them

are used for pulses from other signals. Thus, in effect, the transmission time is shared by

a number of signals by interleaving the pulse trains of various signals in a specified order.

At the receiver, the pulse trains corresponding to various signals are separated. This is

illustrated in figure 3.5.

2 Sampling

2.1 Proof of Sampling Theorem

Let g(t) be a signal function which is periodic with period T0 seconds. Then g(t) may be

expressed as a Fourier series over any interval of duration T0 seconds as

g(t) = a0 +
∞∑

n=1

an cos nω0t + bn sin nω0t t1 ≤ t ≤ t1 + T0
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Figure 3.5 Curves 1 and 2 correspond to two different signals to be transmitted along
the same channel simultaneously. Each signal is first sampled, then coded into a binary
code, and finally intermingled so that the two signals appear at different times. The
interspersed series of pulses is then sent along the channel. This is known as 
time division multiplexing (TDM).

Figure 3.6 Impulse train and its Fourier spectrum.



where

ω0 =
2π

T0

and

an =
2

T0

∫ t1+T0

t1
g(t) cos nω0t dt n = 1, 2, 3, ....

and similarly for bn with sine functions. The Fourier series contains sine and cosine terms

of the same frequency. These can be combined into a single term of the same frequency

using the trigonometric identity

an cos nω0t + bn sin nω0t = Cn cos(nω0t + θn)

where

Cn =
√

a2
n + b2

n

θn = tan−1

(−bn

an

)

C0 = a0

Thus, g(t) may be expressed in the compact form of the trigonometric Fourier series as

g(t) = C0 +
∞∑

n=1

Cn cos(nω0t + θn) t1 ≤ t ≤ t1 + T0

Now consider the Fourier series for a periodic train of delta functions δT0(t) as shown in

figure 3.6 (a). We have

δT0(t) = C0 +
∞∑

n=1

Cn cos(nω0t + θn) ω0 =
2π

T0

.

We first compute a0, an, and bn:

a0 =
1

T0

∫ T0/2

−T0/2
δ(t) dt =

1

T0

an =
2

T0

∫ T0/2

−T0/2
δ(t) cos nω0t dt =

2

T0

Similarly, using the sampling property of the delta function, we obtain

bn =
2

T0

∫ T0/2

−T0/2
δ(t) sin nω0t dt = 0

Therefore, C0 = 1/T0, Cn = 2/T0 and θn = 0. Thus

δT0(t) =
1

T0

(
1 + 2

∞∑

n=1

cos nω0t

)
.
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Figure 3.6 (b) shows the amplitude spectrum. The phase spectrum is zero.

Now we can show that a signal whose spectrum is bandwidth limited to B Hz

can be reconstructed exactly (without any error) from its samples taken uniformly at a

rate R > 2B Hz (samples per second). In other words, the minimum sampling frequency

is fs = 2B Hz. Consider a signal g(t) (figure 3.7 (a)) whose spectrum is bandwidth

limited to B Hz (figure 3.7 (b)). Sampling g(t) at a rate of fs Hz can be accomplished by

multiplying g(t) by an impulse train δTs(t) (figure 3.7 (c)), consisting of delta functions

repeating periodically every Ts seconds, where Ts = 1/fs. This results in the sampled

signal g(t) shown in figure 3.7 (d). The sampled signal consists of impulses spaced every

Ts seconds. The nth impulse, located at t = nTs, has strength g(nTs), the value of the

g(t) at t = nTs. Thus,

g(t) = g(t)δTs(t) =
∑
n

g(nTs)δ(t− nTs)

From above, the Fourier series for δTs(t) is

δTs(t) =
1

Ts

[1 + 2 cos ωst + 2 cos 2ωst + 2 cos 3ωst + ...] ωs =
2π

Ts

= 2πfs.

Therefore,

g(t) = g(t)δTs(t)

=
1

Ts

[g(t) + 2g(t) cos ωst + 2g(t) cos 2ωst + 2g(t) cos 3ωst + ...]

To find G(ω), the Fourier transform of g(t), we take the Fourier transform of the right-

hand side of the above equation, term by term. The transform of the first term in brackets

is G(ω). The transform of the second term 2g(t) cos ωst is G(ω − ωs) + G(ω + ωs). This

represents the spectrum G(ω) shifted to +ωs and −ωs. Similar expressions are found for

the third term (±2ωs shift), and so on to infinity. This means that the spectrum G(ω)

consists of G(ω) repeating periodically with angular frequency ωs = 2π/Ts, as shown in

figure 3.7 (e). Therefore,

G(ω) =
1

Ts

∞∑

n=−∞
G(ω − nωs).

G(ω) can only be recovered from G(ω) (and hence g(t)) if there is no overlap between

successive cycles of G(ω). Figure 3.7 (e) shows that this requires

fs > 2B

Also, the sampling interval Ts = 1/fs. Therefore,

Ts <
1

2B
.
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Figure 3.7 Sampled signal and its Fourier spectrum.

Figure 3.8 Spectra of a sampled signal. (a) At the Nyquist rate. (b) Above
the Nyquist rate.

(a)

(b)



Thus, as long as the sampling frequency fs is greater than twice the signal bandwidth

B, G(ω) will consist of non-overlapping repetitions of G(ω). When this is true, figure 3.7

(e) shows that g(t) can be recovered from its samples g(t) by passing the sampled signal

g(t) through an ideal low-pass filter of bandwidth B Hz. The minimum sampling rate

fs = 2B required to recover g(t) from its samples g(t) is called the Nyquist rate for

g(t), and the corresponding sampling interval Ts = 1/2B is called the Nyquist interval

for g(t).

2.2 Aliasing

There are two main problems in reconstructing the signal from its sampled transform.

The first arises because it is impossible in practice to isolate the spectrum G(ω) using

a real filter if the data is sampled at the Nyquist rate. One solution is to sample faster

than this, thus enabling a more realistic frequency filter to be employed. Unfortunately

even this solution can only give a partial reconstruction as the frequency filter still has

to have a gain of zero beyond the first cycle G(ω). This is impossible, although as the

sampling rate increases, the recovered signal approaches the desired signal more closely.

This is illustrated in figure 3.8.

The second fundamental practical difficulty in reconstructing a signal from its

samples is due to aliasing. The proof of the sampling theorem above relied on the fact

that the signal was bandwidth limited. This is not the case in practical signals, which

are almost always time-limited (of finite duration of width). Thus they have a infinite

bandwidth, and the spectrum G(ω) consists of overlapping cycles of G(ω) repeating every

fs Hz (the sampling frequency), as shown in figure 3.9. We thus have spectral overlap as

a constant feature, regardless of the sampling rate. Thus it is no longer possible, even

theoretically, to recover g(t) from the sampled signal g(t). If the sampled signal is passed

through an ideal low pass filter, the output is not G(ω) but a version of G(ω) distorted

as a result of two separate causes:

1. The loss of the tail of G(ω) beyond |f | > fs/2 Hz.

2. The reappearance of this tail inverted or folded onto the spectrum.

The spectra cross at frequency fs/2 = 1/2Ts Hz. This frequency is called the fold-

ing frequency. Thus components with frequencies above fs/2 reappear as components

with frequencies below fs/2. This tail inversion, known as spectral folding or aliasing,

is shown shaded in figure 3.9. Compare this with Brillouin zones in condensed matter
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Figure 3.9 Aliasing effect.

Figure 3.10 Non-uniform quantization.



physics.

The solution is to suppress the components with frequencies above fs/2 from

g(t) before sampling g(t). This way only the components beyond the folding frequency

are lost, and no spurious signal appear below this frequency. This suppression of of

higher frequencies can be accomplished by an ideal low-pass filter of bandwidth fs/2 Hz.

This filter is called an antialiasing filter, although ideal behaviour is not achievable in

practice.

2.3 Quantizing

When a uniform digitising or quantizing algorithm is used, say for voltages between 0

and 16 V, then if the signal is broken up into 16 levels, the minimum voltage that can

be represented is 1 V. For speech or music, where a large dynamic range is possible,

this would mean that soft parts of the signal would be lost. In practical communication

systems this problem is overcome by the use of non-uniform quantization. Referring to

figure 3.4, it can be shown that the signal to noise ratio in a quantised system can be

expressed as:
S

N
= 3L2m2(t)

m2
p

where mp is the peak amplitude value, and m2(t) is the signal power. This means that

the SNR is a linear function of the message signal power. Ideally we would like to have

a constant SNR for all values of the message signal power.

The root of this difficulty lies in the fact that the quantizing steps are of uniform

value ∆v = 2mp/L. The quantization noise is, in fact, directly proportional to the square

of the step size. The propblem can be solved by using smaller steps for smaller amplitudes

(non-uniform quantization). This is illustrated in figure 3.10 (a). The same result is

obtained by first compressing signal samples and then using a uniform quantization. The

input–output characteristics of a compressor are shown in figure 3.10 (b). The horizontal

axis is the normalised input signal (m/mp), and the vertical axis is the output signal y. An

approximately logarithmic compression characteristic yields a quantization noise nearly

proportional to the signal power m2(t), thus making the SNR practically independent of

the input signal power over a large dynamic range (see figure 3.11).

Two compression laws have been adopted as world standards, the µ-law used in

North America and Japan, and the A-law used in Europe and the rest of the world and
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Figure 3.11 Signal-to-quantization noise ratio in PCM with and without compression. 

Figure 3.12 (a) µ-law characteristic. (b) A-law characteristic.



international routes. The µ-law (for positive amplitudes) is given by

y =
1

ln(1 + µ)
ln

(
1 +

µm

mp

)
0 ≤ m

mp

≤ 1

and the A-law (for positive amplitudes) is

y =
A

1 + ln A

(
m

mp

)
0 ≤ m

mp

≤ 1

A

y =
1

1 + ln A

(
1 + ln

Am

mp

)
1

A
≤ m

mp

≤ 1

These characteristics are shown in figure 3.12.

2.4 Historical Note form Lathi’s Book

Gottfried Wilhelm Leibnitz (1646-1716) was the first mathematician to work out system-

atically the binary representation (using 1’s and 0’s) for any number. He felt a spiritual

significance in this discovery, reasoning that 1, representing unity, was clearly a symbol

for God, while 0 represented the nothingness. Therefore, if all numbers can be repre-

sented merely by the use of 1 and 0, surely this proves that God created the universe out

of nothing!

3 Advantages of Digital Communication

Some advantages of digital communication over analogue communication are listed below:

1. Digital communication is more rugged than analogue communication because it can

withstand channel noise and distortion much better as long as the noise and distortion are

within limits. This is not true of analogue messages; any distortion or noise, no matter

how small, will distort the received signal.

2. The greatest advantage of digital communication over analogue communication, how-

ever, is the viability of regenerative repeaters. Amplifying noisy weak analogue signals

does not improve the SNR, and thus the signal is lost eventually in the noise and distor-

tion. A regenerative amplifier placed in a digital communication system before the noise

and distortion gets too bad can reconstruct the signal exactly, thus enabling transmission

over great distances with high reliability. The most significant error in PCM comes from

quantizing.

3. Digital hardware implementation is flexible and permits the use of microprocessors,

digital switching, and large-scale integrated circuits.
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4. Digital signals can be coded to yield extremely low error rates and high fidelity as well

as privacy.

5. It is easier and more efficient to multiplex several digital signals.

6. Digital communication is inherently more efficient than analogue in realising the

exchange of SNR for bandwidth.

7. Digital storage is relatively easy and inexpensive. It also has the ability to search and

select information from distant electronic storehouses.

8. Reproduction with digital messages is extremely reliable without deterioration, as in

digital imagery and CDs.

9. The cost of digital hardware falls while performance and capacity continues to rise.

There seems to be no end to this trend yet.

3.1 Logarithmic Units

A logarithmic unit for the power ratio is the decibel (dB), defined as 10 log10 (power ratio).

Thus, a SNR is x dB, where

x = 10 log10

S

N

Although the decibel is a measure of power ratios, it is often used as a measure of power

itself. For instance 100 W of power may be considered as a power ratio of 100 with respect

to 1 W, and is expressed in units of dBW as

PdBW = 10 log10 100 = 20 dBW

Thus 100 W of power is 20 dBW. Similarly, power measured with respect to 1 mW is

dBm. For instance 100 W is

PdBm = 10 log10

100 W

1 mW
= 50 dBm.
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