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Part 2     WAVE MOTION AND THE WAVE EQUATION 
 
 
6 Introduction  
 
The answer to the question “Why should we learn about waves” is simple: Waves are 
everywhere! For example 
 
 Strings Violin 
 Membranes Drum 
 Air Sound 
 Optics Interference and diffraction 
 E.M. Radio, T.V., … 
 Quantum mechanics Uncertainty principle 
  α-decay 
 Seismology Earthquakes 
 
In the physics course you will study many of these so it is important that you should 
have a good understanding of the mathematical description of waves. 
 
To start we will consider a simple case of a wave propagating along a string stretched 
along the x-axis. The string can have transverse vibrations corresponding to a 
displacement in the y-direction given by y(x, t ) at position x and time t. It is 
instructive first to consider a case similar to those we have been studying in which a 
system of masses on a stretched elastic string undergo transverse vibrations. 
 
7   N coupled oscillators 
 
Consider the transverse oscillations of N particles of mass m spaced equally along a 
flexible, elastic, massless string, which is under tension T. 
 

 
(reproduced  from French, 1971). 
 



Assume the particles are displaced by small distances yi and thus the angles !
i
are 

small too.  In this case the length of the string between the particles is increased to 
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 Consider the pth particle above. The force acting in the y-direction is 
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Hence the equation of motion of the pth particle is 
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where 2

0
/T ml! = . We can write a similar equation for each of the N particles and 

thus we have N coupled differential equations and thus N normal modes.  The 
derivation of the solution is beyond the scope of these lectures so here we just quote 
the answer. The solution is a linear combination of the normal modes: 
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It is instructive to consider what these normal modes look like. For example for four 
coupled oscillators (N=4)  

 
(reproduced from French, 1971) 
Clearly there 4 normal modes in all. Note that n = 6, 7, 8, 9 repeat patterns of  
n = 4, 3, 2,1 with opposite sign. This illustrates the start of the wave pattern, shown in 
the diagram in white, that we shall see occurs as N !"  when the continuous 
distribution of masses becomes a string. 
 
8 The wave equation – Transverse waves on a string 
 



The simplest example of wave motion is that of transverse displacements of an elastic 
string.  Consider the diagram of small portion of string (θ1 and θ2 small). Suppose the 
string has linear density (kg/m) ρ.  
 

 
 
For small angle of displacement and transverse oscillations, as we discussed above,  
the tension, T , is approximately constant along the string. Resolving the forces acting 
on the portion of string in the y-direction we have, from Newton’s second law 
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The final step is to replace y
x

!

!
 by the leading terms in its Taylor series 
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Using this Eq.(8.2) becomes  
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and so we obtain the Wave Equation 
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As we shall discuss this describes a wave moving with velocity 
  
c = T / !  

 (hence larger tension or lighter string leads to faster waves). 
 
 
 
9  D’Alembert’s Solution 
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Following from Eq.(8.5) the wave equation is 
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This is most easily solved by changing variables to 

 
  

u = x ! ct

v = x + ct
 (9.2) 

The wave equation may then be written in terms of these new variables by application 
of the chain rule. i.e. since 

  
y x,t( ) = y u,v( )  
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similarly 
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Differentiating again we find: 
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and 
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Hence substituting into the wave equation we find 
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from which we may deduce that 
 

  
y u,v( ) = f u( ) + g v( )  (9.8) 

or 
 

  
y x,t( ) = f x ! ct( ) + g x + ct( )  (9.9) 

where f and g are any functions of u and v. This is the general solution to the wave 
equation. The functions f  and g  are determined by the initial conditions as we shall 
show in Section 9.3. However first let us consider the meaning of this solution. 
 
9.1  Travelling waves 
 
Let us illustrate the solution just obtained by choosing 

  
y x,t( ) = f x ! ct( )  at t = 0  to 

be a pulse centered at the origin.  
 
 
Then at a later time t = t

0
 the pulse remains the same shape but is translated to the 

right by a distance ct
0

.   
 

y(x,0)

x



 
 
 
 
 
 
 
 
 
 
Thus 

  
y x,t( ) = f x ! ct( )  represents “travelling wave” moving to the right. 

 
Now consider the case 

  
y x,t( ) = g x + ct( )  at t = 0  to be a pulse centered at the origin 

as in the first diagram. Then at t = t
0

 the pulse remains the same shape but is 
translated to the left by a distance ct

0
.   

 
 
 
 
 
 
 
 
Thus 

  
y x,t( ) = g x + ct( )  represents “travelling wave” moving to the left. 

 
9.2 D’Alembert’s solution with boundary conditions 
 
As we have just seen the functions f  and g  are determined by the initial conditions 
of the wave. These can be incorporated in d’Alembert’s solution in a straightforward 
way.  Suppose at time t = 0, the wave has an initial displacement U(x) and an initial 
velocity V(x) 
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integrating Eq. (9.11) gives: 

 

  

f x( ) ! g x( ) = !
1

c
V x( )dx

b

x

"  (9.12) 

Adding Eqs (9.10) and (9.12) leads to 
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Subtracting Eqs. Eqs (9.10) and (9.12) leads to 
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Hence combining these to form y(x,t) we find: 
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9.3 An example of D’Alembert’s solution 
 
 
A stretched string is released from rest (i.e.V(x) = 0) with an initial square 
displacement. Hence from Eq. (9.16)  
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The resulting evolution is shown in the Figure below 
 

 
This figure can also be represented on a space-time (x,t) domain. Let y(x,t) point out 
of the paper. 



 
 
In regions 1, 2, and 3, y(x,t) = 0 for all x, t 
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10 Waves 
 
10.1 Travelling waves 
 
As we saw in Section 7 the case of the transverse oscillation of individual masses the 
time dependence of the normal modes oscillation is sinusoidal. Let us consider the 
case that the time dependence of the vibrating string at x = 0 is also sinusoidal, 
y(x,0)=sin(! t).  In this case, from Eq. (9.9), the full x,t dependence is given by the 
“wave” 
 y(x,t)=A sin kx +! t( ) + B sin kx "! t( )  (10.1) 
where A, B and k are constants. The speed of the wave is  

 c =
!

k
 (10.2) 

Its frequency, f , is inversely proportional to its period, ! , and is given by 
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This is illustrated in the figure 
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Finally its wavelength, ! , is inversely proportional to its “wavenumber”, k , and is 
given by  

  ! = 
2"

k
 (10.4) 

as is clear from the figure showing y(x,0)  
 
 
 
 
 
 
We can write the equation of a travelling wave in a number of analogous forms: 
 
 Velocity Wavelength Period Angular 

frequency 
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Note that it is often more convenient to represent a travelling wave by a complex 
exponential (this is particularly useful when one wants to combine phases): 
 

  
y x,t( ) = Re Aexp i kx !"t( )#$ %&{ } = Re A exp i kx !"t + '( )#$ %&{ }  (10.5) 

where A is complex, A = A e
i! . 

 
Sometimes it is more convenient to switch x  and t , i.e. 
 ( ) ( ), siny x t A t kx!= "  (10.6) 
This is still a travelling wave moving to the right. 
 
Of course, as discussed above, for a non-sinusoidal wave moving to right with speed 
c, we can always write it as 

  
f x ! vt( )  for some (non-sinusoidal) function f . 

 
10.2 Stationary waves 
 
Consider a string with two waves of equal amplitude travelling in the opposite 
directions 
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Consider now the displacement at some fixed t, e.g. t = 0, for which 2 siny A kx= .  
Some small time δt later the displacement becomes ( )2 cos . siny A t kx! "= . This has 
exactly the same x-dependence, and has not shifted at all (zeroes of y stay at the same 
x) but the amplitude now just a bit smaller. 
 

  
Hence as t increases, the wave stays in the same place, but the amplitude varies. 
 
e.g.  

at / 2t! "=  y = 0 everywhere 
at t! "=   ( ) ( ), / ,0y x y x! " = #  

 
This wave is called a “Stationary Wave”. It can be written in several forms, e.g. 
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10.3 Longitudinal and Transverse Waves and Polarisation 
 
A wave on a string has a displacement perpendicular to the (x) direction in which the 
wave travels  i.e. it is a “Transverse” wave. But a sound wave has molecules moving 
backwards and forwards along the direction of wave propagation, i.e. sound waves are 
“Longitudinal” waves. Another example of a longitudinal wave is a coiled spring with 
the compression moving along spring.  
 
Now clearly there is only one direction along the direction of propagation but there 
are two directions perpendicular to the direction of propagation i.e. a transverse wave 
moving along the x ! axis can have two directions of transverse displacement, 

  
y = Asin kx !"t( )  and 

  
z = Bsin kx !"t + #( ) . Hence transverse waves can be 

“polarised”, but longitudinal waves can not.  Polarisation states correspond to definite 
values for the amplitudes A and B: 
 

A B φ Polarisation state 
1 0 - Linear  
0 1 - Linear  
1 1 0 Linear  
1 1 π Linear  
1 1 π/2 Circular (LH) 
1 1 −π/2 Circular (RH) 

 



 
11 Group and Phase velocity. 
 
11.1 Information transmission 
 
Let us consider how a signal might be sent via a wave. It is necessary to modulate the 
wave otherwise it will convey zero information. An example is given by the signal 
shown below 
 

 
Here the wave is on for time T, then off  i.e.

  
y = Asin kx !"t( ) for / 2kx t T! !" #  

and y = 0  for / 2kx t T! !" > . It is important to note that this is not a single 

frequency wave for which
  
y = Asin kx !"

0
t( )   for some frequency !

0
 and which 

would apply for all 
  
kx !"

0
t .  In order to buld up a wave which is off at some time it 

is necessary to have a superposition of a range of frequencies. 
 
[This actually requires FOURIER TRANSFORMS which we won’t meet until the 2nd 
year, but we will give a simple  illustration of the result below]  
11.2 Group and phase velocity 
 
Let us consider in more detail our example of a wave that conveys information which 
is made up of a superposition of many waves with a range of frequencies. For 
illustration we consider a superposition of a discrete number of waves.  
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where D
n
 are constants. An immediate question is  how fast does envelope carrying 

the signal move?  The answer to this is called the “group velocity”. This can be quite 
different from the answer to the question how fast do the individual waves in the 
superposition travel? This is called the “phase velocity”. 
 
Let us first compute these velocities. 

Figure 11.1 

t = 0 t = t1 
L1 

L2 



 
From Figure 11.1 we may determine the group velocity, g , by working out how far 
the front of the signal moves in time t

1
 .  This is given by: 

 g =
L
2

t
1

 (11.2) 

What about the phase velocity? In Eq. (11.1) the individual waves have phase velocity 

v
n
=
!

n

k
n

.   

Non-dispersive medium 
 
If these are all equal, v

n
= v , the envelope moves with unchanged shape and the 

phase velocity is the same as the group velocity.  That this is the case follows from 
the fact that in this case Eq. (11.1) may be rewritten as  
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i.e. a function of   (x ! vt)  only. This is the form of d’Alembert’s solution obtained in 
Section 9.2 and shows that the whole wave moves with the phase velocity, v, with 
unchanged shape, i.e. the group velocity equals the phase velocity. 
 
Dispersive medium 
 
Now let us consider waves in a “dispersive medium”, i.e. one in which different 
frequencies are transmitted at different speeds: 
 

  
y = Asin kx !"t( )  where v =" / k = f "( )  (11.4) 

A well known example is the passage of light through a glass prism where  
different colours emerge at different angles because the refractive index µ (= c/v)  
depends on the colour (ω), i.e. v depends on ω. 
 
What happens to our example in Eq. (11.1)? In this case the individual phase 

velocities v
n
=
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k
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are not all equal and the group velocity can be quite different from 

the phase velocity. This is illustrated in Figure 11.1 where one phase velocity, given 

by vp =
L1

t1

, is greater than the group velocity g . To make this clearer let us turn to a 

more definite, albeit oversimplified, model of a wave packet of the form of Eq. (11.1) 
but with N = 2 , i.e. a superposition of just two waves. 
 
11.4 A simple approach to building a wave packet 
 
Although we really need an infinite number of different frequency waves to construct 
a finite wave packet here we will illustrate the result using just two waves, y

1
 and y

2
. 
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where !k  and !" are small. Then 



 ( ) ( )1 2
2 cos . . siny y y A k x t kx t! !" "= + = # #  (11.6) 

The first term has a very long wavelength 2π/δk (and very long period 2π/δω). This 
describes the slowly varying envelope which moves at speed g = δω/ δk. 
 
The second term is very similar to y1 and y2 and has speed  v = ω/k for the individual 
wavelets. 
 
The addition of these waves gives the following  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Plot for y1,y2 and y1+y2 where δk/k = 0.05. 
This is not exactly one packet of waves, but an infinite series of sausages (because we 
used two waves instead of infinite number). However the essential point is that 
envelope moves with speed g = δω/ δk and not at the mean phase velocity v = ω/k. 
 
11.5 Group velocity for a complete wave packet 
 
For the case of a real wave packet of finite extent comprised of an infinite number of 
different frequency waves the group velocity is given by  
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For the case of a dispersive medium with 
  
v =! / k = f !( )  then 
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 need not equal 

k

!  and so the group velocity need not equal the phase velocity. As we have discussed 

it is the group velocity that determines the speed a signal can propagate and this is 
constrained by the theory of relativity to be less than or equal to the speed of light , 
g ! c . However the phase velocity, v , can readily be greater than c .  
 
We can illustrate this with a simple example. Consider an experiment to determine the 
speed of light by measuring the time of flight of a pulse of light through a long tube 
filled with air to determine its velocity, v

0
. Since 

 
µ ! 1 , we need to correct the 



measured time to determine the speed of light, c , in vacuum. The naïve answer is 
c = v

0
µ  but this does not give the group velocity if µ depends on k i.e. on the 

frequency. 
To make this explicit let us assume the phase velocity , v , varies with colour as 
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µ to allow for the effect 
of the air. 
 
11.6 Dispersion and the spreading of the wave packet 
 
Since a finite wave packet involves a superposition of waves with a range of 
frequencies, if the velocity is frequency dependent then, necessarily, the shape of the 
packet will change because the individual wave components are moving with  
 

 
different speed. This is illustrated above. However this immediately demonstrates a 
problem to measuring the group velocity because if the shape of the wave packet is 
changing it is impossible precisely to measure the envelope’s speed. This effect may 

be seen algebraically from the fact that the group velocity 
 
g =

d!

dk
 is in general a 

function of the frequency and thus not uniquely determined for a wave packet 
comprised of a range of frequencies. In practice this may not be so important for a 
long wave packet as in this case the range of frequencies in the packet is quite small 
so the ambiguity of the group velocity is also small. 
 
11.7 Alternative expressions for g 
 
There are many equivalent expressions for the group velocity. Above we used  
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But   ! = vk  so we can write it as  

 
  
g = v + k

dv

dk
 (11.9) 

Further, since 2 /k ! "=  we also have  
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Yet another form is given using 
  
v = c / µ   
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i.e. /g c µ!  in a dispersive medium as we found in our example above. 
 
Note here we have used k and λ as measured in a medium. More conventionally we 
use the wavelength, !" , measured in vacuum. In terms of it we have  
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12 Energy of vibrating string 
 
Let us assume the string carries a transverse wave ( )siny A kx t!= "  and consider a 
small portion of the string as shown in the figure below. The string has linear density 
! . There are two contributions to the energy, the kinetic energy and the potential 
energy. 
 
 

  
 
Kinetic energy (K.E.) 
 
The K.E. of the segment shown is given by  
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We may now integrate over a distance l that contains a whole number of wavelengths, 
at fixed t. 
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Hence the K.E. per unit length is given by 
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Potential energy 
 
The wave stretches the string leading to an increase in its potential energy relative to 
the value in its equilibrium position. The potential energy in a the segment is given by 
the work done in stretching the string. The tension, T, is the force resisting the 
stretching so we have  
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Integrating this over l  leads to the result  
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How do the K.E. and P.E. compare? Since 
  
v =! / k = T / "  we have 2 2
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and hence  
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Hence the total energy per unit length is given by  
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12.1 Energy flow 
 
In time t, the wave moves a distance vt (note that since we are considering a plane 
wave of definite frequency it is the phase velocity, v, that is relevant).  Hence the 
energy flow/unit time, F, is given by  
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( Note that the energy flow may also be calculated by considering the rate at which 
the string to the left of a position does work on the right. 
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Substituting for y and differentiating we find the same answer.) 
 
13 Solution of the wave equation – separation of variables 
 
In this section we introduce the method of separation of variables for finding solutions 
to the wave equation. In Section 8 we derived the wave equation which for 
convenience we repeat here 

 
  

!
2
y

!x
2
=

1

v
2

!
2
y

!t
2

 (13.1) 

where v is the speed of the wave. 
 
We now look for solutions that have the “separated” form: 
 ( ) ( ) ( ),y x t X x T t=  (13.2) 
Substituting this into the wave equation we find: 

 
  

T t( )
d

2
X x( )
dx

2
=

1

v
2

X x( )
d

2
T t( )
dt

2
 (13.3) 

or 

 
2

1X T

X v T
=

!! !!

 (13.4) 

Now the left-hand side of this equation is a function of just x, while the right-hand 
side is a function of just t. The only way that a function of x can equal a function of t 
for all x and t is if both are equal to a constant, C

S
. We look for a solution in which 

this constant, known as the “separation constant”, is negative,  CS = –k2. i.e. 

 
   

!!X

X
=

1

v
2

!!T

T
= C

S
= !k

2  (13.5) 

Then we find that 

 
   

!!X + k
2
X = 0

!!T + k
2
v

2
T = 0

 (13.6) 

The separation constant reduces the partial differential equation to two ordinary 
differential equations which may be solved using standard methods to give: 

 
  

X = Acos kx + Bsin kx

T = C cos kvt + Dsin kvt
 (13.7) 

where A, B, C and D are unknown constants which may be found from the boundary 
conditions. If the boundary conditions constrain A = 0, and D = 0 then we find that 
 

  
y x,t( ) = X x( )T t( ) = !B sin kxcos kvt  (13.8) 

(B’=BC) which is a standing wave of the form that we introduced earlier in Eq. (10.7) 
(N.B. kv=! ). Eq. (10.7) shows the connection of the solution we have just obtained 
by separation of variables with that we obtained previously by d’Alembert’s solution. 
 



In deriving this solution we chose our separation constant to be negative. What 
happens if we had chosen it to be positive?  If CS = +k2 then we find: 
 

  
y x,t( ) = X x( )T t( ) = Aekx

+ Be!kx( ) Cekvt
+ De!kvt( )  (13.9) 

If CS = 0 then we find: 
 ( ) ( ) ( ) ( )( ),y x t X x T t A Bx C Dt= = + +  (13.10) 
and the list continues for complex separation constants. Which of these solutions is 
elevant depends on the physical situation. In these lectures we are concerned with the 
sinusoidally varying solutions that correspond the negative choice for the separation 
variable.  
 
Even having chosen the sign the solution is not unique because any value of k  may 
be used. Indeed, since the differential equation is linear, the principle of superposition 
applies and a linear combination of any number of solutions with different values of 
k will still be a solution.  In the next section we will see how this can be used to find 
general solutions to various physical situations. 
 
 
13.1 Wave on a string with fixed ends 
 

 
Consider a string given an initial displacement, y(x,0) , and then released. What 
happens subsequently? Since the string has fixed ends we also have the boundary 
conditions y(0,t) = y(L,t) = 0 . 
 
We have found by separation of variables that a solution to the wave equation is given 
by: 
 

  
y x,t( ) = Acos kx + Bsin kx( ) C cos kvt + Dsin kvt( )  (13.11) 

As we shall see we can use a linear superposition of such solutions with different 
choices for k to build a solution that satisfies the boundary conditions. Let us consider 
the boundary conditions in turn. 
 

i) The string is initially at rest, i.e. /y t! ! =0 for all x , which requires D = 0 
ii) y(0,t) = 0 requires that A = 0 
iii) y(L,t) = 0 requires that kL = nπ,  where n is any integer. This latter 

condition is known as the eigenvalue equation and it limits k to be an 
integer multiple of n! / L  ; each of these values corresponds to a normal 
mode. 

 
With this we can write the most general solution consistent with the boundary 
conditions i)-iii) as a linear superposition of the normal mode solutions: 

 
  
y x,t( ) = A

n
sin

n! x

L
cos

n!vt

Ln=0

"

#  (13.12) 



 So far we have not imposed the final initial condition, namely the initial displacement 
y(x,0) . If the initial string displacement initially corresponds to a normal mode 

 
  
y x,0( ) = Bsin

m! x

L
 (13.13) 

then by comparision with Eq. (13.12),  An = B for n = m, An = 0 otherwise and the 
subsequent motion is given by 

 
  
y x,t( ) = Bsin

m! x

L
cos

m!vt

L
 

What if initial displacement does not correspond to a normal mode? 
e.g. a plucked guitar string with shape 
 

 
In this case the subsequent motion described by an infinite sum of normal modes as in 
Eq. (13.12). At t = 0 

 ( ),0 sinn

n

n x
y x A

L

!
="  (13.14) 

and the form of the initial displacement will determine the A
n
 coefficients. In the 

second year you will study Fourier series of this type. It turns out that the coefficients 
can easily be found due to the orthogonality of the sine functions over the range 
0 ! x < L , giving 

 ( )

0

2
,0 sin

L

n

n x
A y x dx

L L

!
= "  (13.15) 

However, since this lies beyond the scope of these lectures, let us consider a simple  
case in which the initial distribution is given by  

 ( )
1 2

,0 sin sin
2

x x
y x

L L

! !
= +  (13.16) 

Comaring with Eq. (13.12) we see that at subsequent times: 

 
  
y x,t( ) = sin

! x

L
cos

!vt

L
+

1

2
sin

2! x

L
cos

2!vt

L
 (13.17) 

Note that in this case we have a superposition of two normal modes and, unlike the 
case with just a single normal mode, the  subsequent motion is not equal to the initial 
displacement × varying amplitude. Moreover since the shorter wavelengths oscillate 
faster the shape of the wave varies during oscillation. 
 
 
14 Wave reflection at a boundary 
 
In optics reflection is caused at a boundary separating regions with different refractive 
indices in which the light travels at different speeds. Exactly the same phenomena 
occurs for the transverse waves propagating on a string. In this case on obtains a 
boundary separating regions with different wave speeds by joining two strings of 



different linear densities, !
1,2

. Since the tension, T , remains the same across the 
boundary, the phase velocities are different  
 v

1,2
= T / !

1,2
 (14.1) 

This is illustrated in the diagram 

 
 x < 0 x > 0 
 Lighter string, larger v Heavier string, smaller v 
 →  Incident wave →  Transmitted wave 
 ←  Reflected wave 
 
 Incident wave ( )1

sinA t k x! "  

 Reflected wave ( )1
sinA t k x!" +  

 Transmitted wave ( )2
sinA t k x!"" #  

Note: 
1) We have made a slight change in the convention using  t kx! " instead of 

kx t!" . This is not crucial, but agrees with other treatments. 
2) All waves have the same ω [This follows from the boundary conditions at x = 

0. These cannot be satisfied for all t unless !  is constant – see below] 
3) The transmitted wave has 

2
k x! (right mover) 

4) The reflected wave has 
1
k x+ (left-mover) 

The amplitudes A!  and A!!  are determined in terms of the incident amplitude A from 
the boundary conditions at x = 0. There are two boundary conditions 
 

A) ( ) ( ), ,y t y t! !" = +  where ε is a number close to zero. This just says 
the string is continous. 

B) 
  

!y

!x
"# ,t( ) =

!y

!x
+# ,t( ) . This follows because, for small angular 

displacements,  the vertical component  of the force on the left of the 

boundary 
  
T
!y

!x
"# ,t( )must be balanced by the vertical component  of the 

force on the left of the boundary 
  
T
!y

!x
" ,t( ) . (For small displacements the 

horizontal component of the force vanishes to the order considered here – 
see the discussion above Eq. (7.1)) 

 
These boundary conditions are more commonly written as 

 

  

y
1

0,t( ) = y
2

0,t( )
!y

1

!x
0,t( ) =

!y
2

!x
0,t( )

 (14.2) 

x = 0 

ρ1 
ρ2 



 
where y

1
x,t( ) = Asin(!t " k1x) + #A sin(!t + k1x)  is the sum of the incident and 

reflected waves on the left of the boundary and y
2
x,t( ) = A ''sin(!t " k2x)  is the 

transmitted wave on the right of the boundary. Thus we have  
 
 

  
Asin!t + "A sin!t = ""A sin!t # A+ "A = ""A  (14.3) 

and  
 

  
!k

1
Acos"t + k

1
#A cos"t = !k

2
##A cos"t $ k

1
A! #A( ) = k

2
##A  (14.4) 

 
These may be solved to give 

 

  

r =
!A

A
=

k
1
" k

2

k
1
+ k

2

t =
!!A

A
=

2k
1

k
1
+ k

2

 (14.5) 

where r and t are known as the amplitude reflection and amplitude transmission 
coefficients respectively. 
 
Special cases: 

1) k1 = k2 ⇒ A!  = 0, 1
A

t
A

!!
= =  No reflection 

2) k1 < k2 ⇒ A!  is negative 
In this case the reflected wave may be written as 

  
! "A sin #t + k

1
x( ) = "A sin #t + k

1
x + $( )  i.e. there is a phase change at a rare-dense 

boundary (since
  
v =! / k = T / " ,  k1 < k2  implies ρ1 < ρ 2). 

 
3) k1 > k2  ⇒ A!  is positive  
 

4) ρ 2 → ∞ ⇒ k2 → ∞  hence  A
r

A

!
= → –1. In this case the tension T → 0 and 

there is no wave in the very heavy string. 
 
 
14.1 The energy flux at the boundary 
 
In Eq. (12.8) we showed that the energy flux is proportional to the (amplitude)2. It is 
thus very tempting, but wrong to think that the power reflection and transmission 
coefficients should be just RP = r2, and TP = t2.  That this cannot be true can 
immediately be seen from the fact that 

  
R

P
+ T

P
! 1  which would correspond to non-

conservation of energy. To see this, note that from Eq. (14.5) 

  

r
2
+ t

2
=

k
1
! k

2

k
1
+ k

2

"

#$
%

&'

2

+
2k

1

k
1
+ k

2

"

#$
%

&'

2

=
5k

1

2 ! 2k
1
k

2
+ k

2

2

k
1
+ k

2
( )

2
( 1 



The origin of the error is clear from Eq.(12.8) which expresses the power flux as 

  

P =
1

2
T!kA

2 . Although T and ω are constant within the string k  is different on each 

side of the boundary, explaining the error.  Hence at the boundary between the two 
strings: 

Incident power flux 2

1

1

2
I
P T k A!=  

Reflected power flux 2

1

1

2
R
P T k A! "=  

Transmitted power flux 2

2

1

2
T
P T k A! ""=  

Hence the power reflection and transmission coefficients are given by  

 
  

R
P
=

P
R

P
I

=
!A

2

A
2
= r

2
=

k
1
" k

2

k
1
+ k

2

#

$%
&

'(

2

 (14.6) 
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P
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P
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=
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 (14.7) 

Hence 
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2
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2
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2
= 1 (14.8) 

as required by energy conservation. 
 
14.2 Reflection from a mass at the boundary 
 
 
Suppose that a finite mass M is fixed at the boundary between two semi-infinite 
pieces of string of density ρ1 and ρ2: 

 
The string is clearly continuous and hence the first boundary condition is 
 y

1
(0,t) = y

2
(0,t)  (14.9) 

as before. The second boundary condition however is not the same since we now have 
a finite mass at the boundary. In this case the sum of the forces at the boundary act on 
the mass and generates its acceleration in the transverse direction according to 
Newton’s 2nd law: 

 
  
!T

"y
1

"x
0,t( ) + T

"y
2

"x
0,t( ) = M

"
2
y

1

"t
2

0,t( ) = M
"

2
y

2

"t
2

0,t( )  (14.10) 

M 

ρ1 
ρ2 

A 

A’ 
A’’ 



Eqs. (14.9) and (14.10) are the boundary conditions for this problem. In this case we 
see that they involve both first and second derivatives and for this reason it is easiest 
to use a complex exponential representation for the waves  i.e.  

 

  

y
1

x,t( ) = Re Aexp i !t " k
1
x( )( ){ } + Re A 'exp i !t + k

1
x( )( ){ }

y
2

x,t( ) = Re A ''exp i !t " k
2
x( )( ){ }

 (14.11) 

where A  is real but A '  and A ''  may be complex. Inserting this in Eqs. (14.9) and 
(14.10) gives   
 
  A+ !A = !!A  (14.12) 
and 
 

  
ik

1
TA! ik

1
T "A ! ik

2
T ""A = !#

2
M A+ "A( ) = !#

2
M ""A  (14.13) 

which simplifies to 
 

  
ik

1
A! "A( ) = ik

2
!#

2
M / T( ) ""A  (14.14) 

 From Eqs. (14.12) and (14.14) we can determine the amplitude reflection and 
amplitude transmission coefficients: 
 

 
  

r =
!A

A
=

k
1
" k

2
( )T " i# 2

M

k
1
+ k

2
( )T + i# 2

M
$ r e

i%
r  (14.15) 

 

 
  

t =
!!A

A
=

2k
1
T

k
1
+ k

2
( )T + i" 2

M
# t e

i$
t  (14.16) 

Substituting this in Eq. (14.11) gives the real amplitudes with the reflected and 
transmitted waves having phase shifts !

r
 and !

t
 relative to the incident wave. 

 
Consider the special case where the second line has zero mass per unit length, i.e. we 
just have a mass on the end of a line.  i.e.  k2 = 0. Then: 

 
  

r =
!A

A
=

k
1
T " i#

2
M

k
1
T + i#

2
M

 (14.17) 

 
Hence if M = 0, r = 1 and if M is large, r = !1 = e

i" . 
 

  
15 Characteristic Impedance  
 
Although more commonly used for cases of electromagnetic waves travelling in 
transmission lines or space, the concept of “characteristic Impedance” may actually 
be defined for any wave motion and is a useful descriptive parameter. 
 
For transverse waves on a string the characteristic impedance Z is defined as the force 
acting in the y-direction divided by the velocity of the string in the y-direction, 
i.e. 



 

  

Z =

F
y

v
y

=

!T
"y

"x

"y

"t

 (15.1) 

 
 

For a sine wave travelling in the positive x-direction ( ) ( ), siny x t A kx t!= "  and thus 
the characteristic impedance is: 

  

Z =
Tk

!
=

T

v
= T"( )

1/ 2

 

 
We may express the reflection and transmission coefficients of Eqs. (14.15) and 
(14.16) in terms of impedances 
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 (15.2) 

where we have substituted the wavenumbers for the characteristic impedances 
1,2

1,2

Tk
Z

!
=  and also for the ‘impedance’ of the mass: 

M
Z i M!= . 

 
16 Other Waves  
 
16.1 Waves on an Electrical Line  

 
The voltage change across the inductor of self-inductance L in one of the elements is 
given (via Faraday’s law) as: 

 I V
L V x
t x

! !
" "

= # = #
" "

 (16.1) 

where we have assumed that the elements are so small that the voltage change can be 
related to the variation of voltage with distance. 
 
Similarly the current flowing though the capacitance C in each element is given by: 

 
 

!Q

!t
= C

!V

!t
= "# I = "

!I

!x
#x  (16.2) 

Hence dividing these two equations by δx gives: 

L L L 
C C C 

x x + δx 



 
 

L

!x

"I

"t
= #L

"I

"t
= $

"V

"x
 (16.3) 

and 

 
 

C

!x

"V

"t
= #C

"V

"t
= $

"I

"x
 (16.4) 

where C! is the capacitance per unit length of the transmission line and L! is the self-
inductance per unit length. 
 
Differentiating Eq. (16.3) with respect to t and differentiating Eq. (16.4) with respect 
to x gives: 

 
2 2 2

2 2

1V I I
L

t x C x t

! ! !
"= # = #

"! ! ! !
 (16.5) 

Hence: 

 
  

!
2
I

!x
2
= "L "C

!
2
I

!t
2

 (16.6) 

which is a wave equation for I. Similarly we can obtain a wave equation for V: 

 
  

!
2
V

!x
2
= "L "C

!
2
V

!t
2

 (16.7) 

 Hence the electrical line supports waves with a phase speed   v = 1 / !L !C . 
 
Suppose we have a voltage wave travelling in a single direction: ( )0

sinV V t kx!= " , 

then using the above equations we find that ( ) ( )0
/ sinI V Z t kx!= "  where Z is the 

characteristic impedance given by /Z L C! != .  
 
Reflection at a terminated line 
 

 
 
 
Voltage wave travels along a transmission line of characteristic impedance Z0 and is 
partly reflected by a terminating impedance ZT at x = 0. The voltage and current on 
the line are thus given by: 

 

  

V = Aexp i !t " kx( )( ) + #A exp i !t + kx( )( )
Z

0
I = Aexp i !t " kx( )( ) " #A exp i !t + kx( )( )

 (16.8) 

 
At x = 0, V and I are related by the terminating impedance and thus: 

L L 
C C 

ZT 

A 

A’ 

x = 0 



 
  

V

Z
0
I
=

Z
T

Z
0

=
A+ !A

A" !A
 (16.9) 

 
Hence 

 
  

r =
!A

A
=

Z
T
" Z

0

Z
T
+ Z

0

 (16.10) 

Hence  
when  ZT → 0, r → –1 
when  ZT = Z0,  r = 0 
when  ZT → ! ,  r → +1 

 
These limits appear to be the reverse of what we found for the mass on the end of a 
string. However the characteristic impedance is defined differently. For strings 
  Z = Tk /! = T / v . However for transmission lines   Z = !L v  which is somewhat 
different ! 
 
16.2 Sound 
 
Sound waves correspond to longitudinal waves associated with the compression of the 
medium. Consider waves propagating in the x-direction as shown in the Figure  

 
The compression caused by the passage of the sound wave changes the pressure and 
the volume of the element of gas originally between x and x+δx. Consider a cross-
sectional area A of the wave.  
 
With no sound wave, the volume of the element of gas is 

1
V A x!= .With the sound 

wave passing the new volume of the element is 
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1 1

V A d x x d x V
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A x V
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d
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= + " +

#
$ +

#

#
= +

#

 (16.11) 

Hence 

 
  

!V =V
2
"V

1
=
#d

#x
V  (16.12) 

The instantaneous pressure of the gas may be approximated by 
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0
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 (16.13) 

where K is the bulk modulus of the gas (or solid) defined as: 

 
 
K = !V

"p

"V
 (16.14) 

The net force, F, acting on the element is: 
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A"x p = p ! K

'd

'x

(
)*

+
,-

= K
'2d

'x2
V

 (16.15) 

 
 

From Newton’s 2nd law  

 
  

F =
!2

d

!t
2
"V  (16.16) 

Hence, comparing these equations  

 
  

!2
d

!x
2
=

"

K

!2
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!t
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 (16.17) 

which is the wave equation with 
  

v =
K

!
. 

 
The characteristic impedance is defined as 

 

d
K
x

Z
d

t

!

!
=

!

!

 (16.18) 

so for a wave travelling in positive x-direction 

 
  

Z =
Kk

!
=

K

v
= "K( )

1/ 2

 (16.19) 

Isothermal compressions: PV = constant  ⇒ p
K V p

V

!
= " =

!
⇒ 

  
v = p / !  

Adiabatic compressions:  PVγ = constant  ⇒ p
K V p

V
!

"
= # =

"
⇒ 

  
v = ! p / "  



From kinetic theory we know 
  
p =

1

3
!v

2  where here v is the molecular speed. Hence 

  

v
sound

=
!

3
v

2 and thus 
  
v

sound
! v

rms
of molecules since sound is transmitted by 

moving molecules. 
 
N.B. For longitudinal waves travelling along solid bars, we get very similar solutions 
except that the bulk modulus K must be replaced by Young’s modulus Y. 
 
 
 



 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 


