Advanced Quantum Mechanics

Scattering Theory and Relativistic Quantum Mechanics
 Problem Set 1: Scattering Theory

1 Find the Born approximation to the differential cross section as a function of the angle of scattering for a central potential $V(r)=-V_{0}$ for $r \leq r_{0}, V(r)=0$ for $r>r_{0}$.

2 The potential for 'hard sphere' scattering is $V(r)=\infty$ for $r<r_{0}$ and $V(r)=0$ for $r>r_{0}$. (i) Show that the s-wave phase shift $\delta_{0}(k)$ is given by $\delta_{0}(k)=-k r_{0}$, and calculate the total $\ell=0$ cross section.
(ii) The 'reduced' radial wave function $u_{\ell}(r)$ is defined via $\psi(r, \theta, \phi)=R_{\ell}(r) Y_{\ell, m}(\theta, \phi)$, and $R_{\ell}(r)=u_{\ell}(r) / r$. Find the equation satisfied by u_{ℓ}, and show that the radial wave equation for $r>r_{0}$ and $\ell=1$ is satisfied by the wave function

$$
u_{1}(r)=C\left[\frac{\sin k r}{k r}-\cos k r+a\left(\frac{\cos k r}{k r}+\sin k r\right)\right]
$$

where C and a are constants. Show that the definition of the p-wave phase shift $\delta_{1}(k)$ implies that $\tan \delta_{1}(k)=a$, and determine a from the condition satisfied by $u_{1}(r)$ at $r=r_{0}$.
Show that, as k approaches zero, $\delta_{1}(k)$ behaves like $\left(k r_{0}\right)^{3}$.
3 The scattering amplitude $f(\theta, k)$ has the partial wave expansion

$$
f(\theta, k)=\frac{1}{k} \sum_{\ell} e^{i \delta_{\ell}} \sin \delta_{\ell}(2 \ell+1) P_{\ell}(\cos \theta)
$$

where the symbols have their usual meaning.
(i)Show
(a) $\sigma_{t o t}=\sum_{\ell} \sigma_{\ell}$ where $\sigma_{\ell}=\frac{4 \pi}{k^{2}} \sin ^{2} \delta_{\ell} \cdot(2 \ell+1)$
(b) $\sigma_{\text {tot }}=\frac{4 \pi}{k} \operatorname{Im} f(0, k)$.
(ii) In the 'Fermi theory' of lepton-lepton scattering the s-wave amplitude $a_{0} \equiv e^{i \delta_{0}} \sin \delta_{0} / k$ for the scattering process

$$
\bar{\nu}_{\mu}+\mu^{-} \rightarrow \bar{\nu}_{e}+e^{-}
$$

is given approximately by $a_{0}^{F} \approx G_{F} k$ where k is the centre of mass momentum and G_{F} is Fermi's constant, with the value (in units $\hbar=c=1$)

$$
G_{F} \approx \frac{10^{-5}}{M_{p}^{2}}
$$

where M_{p} is the proton mass. Assuming that k in part (i) can also be taken to be the CM momentum (in units $c=\hbar=1$) estimate the $C M$ energy (neglecting lepton masses) at which unitarity is violated in the theory. What actually happens? (Note: $\hbar \approx 200(\mathrm{MeV} / \mathrm{c}) \mathrm{fm})$.
$4 L_{x}$ is a linear ordinary differential operator and $\psi(x)$ satisfies the equation $L_{x} \psi(x)=g(x)$ where $g(x)$ is a known function. The functions $\phi_{n}(x)$ form a complete orthonormal set of eigenfunctions of L_{x}, with eigenvalues λ_{n} :

$$
L_{x} \phi_{n}(x)=\lambda_{n} \phi_{n}(x) .
$$

Expanding $\psi(x)$ as a linear combination of the $\phi_{n}(x)$ via

$$
\psi(x)=\sum_{n} a_{n} \phi_{n}(x)
$$

show that

$$
a_{m}=\frac{1}{\lambda_{m}} \int \phi_{m}^{*}(y) g(y) d y .
$$

Deduce that the Green function for the equation $L_{x} \psi=g$ must be

$$
G(x, y)=\sum_{n} \frac{\phi_{n}(x) \phi_{n}^{*}(y)}{\lambda_{n}}=\sum_{n} \frac{\langle x \mid n\rangle\langle n \mid y\rangle}{\lambda_{n}} .
$$

Verify that this is correct by applying the operator L_{x} to $G(x, y)$.
Use this approach to find the coordinate space Green function for the time independant Schrodinger equation.

5 (i) In first order time-dependent perturbation theory, the transition probability per unit time for a particle in the momentum eigenstate $\left|\boldsymbol{k}_{i}\right\rangle$ to scatter, via the time-independent potential $V(r)$, into the momentum eigenstate $\left|\boldsymbol{k}_{f}\right\rangle$ is

$$
\left.\int 2 \pi\left|\left\langle\boldsymbol{k}_{f}\right| V\right| \boldsymbol{k}_{i}\right\rangle\left.\right|^{2} \delta\left(E_{i}-E_{f}\right) \frac{d^{3} \mathbf{k}_{f}}{(2 \pi)^{3}}
$$

where units $\hbar=1$ are used (for a concise derivation see P79, Quarks and Leptons, Halzen \& Martin, Wiley 1984). Writing

$$
d^{3} \mathbf{k}_{f}=\left|\mathbf{k}_{f}\right|^{2} d\left|\mathbf{k}_{f}\right| d \Omega \quad \text { and } \quad E_{f}=\mathbf{k}_{f}^{2} / 2 m
$$

show that $d^{3} \mathbf{k}_{f}=m\left|\mathbf{k}_{f}\right| d E_{f} d \Omega$, and hence show that the differential cross section is

$$
\left.\frac{d \sigma}{d \Omega}=\frac{m^{2}}{4 \pi^{2}}|\langle f| V| i\right\rangle\left.\right|^{2} .
$$

(ii) Show that

$$
\int e^{i \boldsymbol{q} \cdot \boldsymbol{r}} \frac{e^{-r / a}}{r} d^{3} \boldsymbol{r}=\frac{4 \pi}{\boldsymbol{q}^{2}+a^{-2}}
$$

By considering the limit $a \rightarrow \infty$, derive the Rutherford scattering cross section formula

$$
\left(\frac{d \sigma}{d \Omega}\right)_{R}=\frac{\hbar^{2} c^{2} \alpha^{2}}{16 E^{2} \sin ^{4} \theta / 2}
$$

using Born Approximation for the Coulomb potential for two charges, one $+e$ and one $-e$; here $E=\frac{1}{2} m v^{2}$ where v is the speed of the incoming particle and m is its mass; also, α is the fine structure constant and θ is the scattering angle (ie the angle between the incident wave vector and the final wave vector).

