Advanced Quantum Mechanics

Scattering Theory and Relativistic Quantum Mechanics

Problem Set 1: Scattering Theory

- 1 Find the Born approximation to the differential cross section as a function of the angle of scattering for a central potential $V(r) = -V_0$ for $r \leq r_0$, V(r) = 0 for $r > r_0$.
- 2 The potential for 'hard sphere' scattering is $V(r) = \infty$ for $r < r_0$ and V(r) = 0 for $r > r_0$. (i) Show that the s-wave phase shift $\delta_0(k)$ is given by $\delta_0(k) = -kr_0$, and calculate the total $\ell = 0$ cross section.

(ii) The 'reduced' radial wave function $u_{\ell}(r)$ is defined via $\psi(r, \theta, \phi) = R_{\ell}(r)Y_{\ell,m}(\theta, \phi)$, and $R_{\ell}(r) = u_{\ell}(r)/r$. Find the equation satisfied by u_{ℓ} , and show that the radial wave equation for $r > r_0$ and $\ell = 1$ is satisfied by the wave function

$$u_1(r) = C\left[\frac{\sin kr}{kr} - \cos kr + a\left(\frac{\cos kr}{kr} + \sin kr\right)\right]$$

where C and a are constants. Show that the definition of the p-wave phase shift $\delta_1(k)$ implies that $\tan \delta_1(k) = a$, and determine a from the condition satisfied by $u_1(r)$ at $r = r_0$. Show that, as k approaches zero, $\delta_1(k)$ behaves like $(kr_0)^3$.

3 The scattering amplitude $f(\theta, k)$ has the partial wave expansion

$$f(\theta, k) = \frac{1}{k} \sum_{\ell} e^{i\delta_{\ell}} \sin \delta_{\ell} (2\ell + 1) P_{\ell}(\cos \theta)$$

where the symbols have their usual meaning.

(i)Show

(a) $\sigma_{tot} = \sum_{\ell} \sigma_{\ell}$ where $\sigma_{\ell} = \frac{4\pi}{k^2} \sin^2 \delta_{\ell} \cdot (2\ell + 1)$ (b) $\sigma_{tot} = \frac{4\pi}{k} \operatorname{Im} f(0, k).$

(ii) In the 'Fermi theory' of lepton-lepton scattering the s-wave amplitude $a_0 \equiv e^{i\delta_0} \sin \delta_0/k$ for the scattering process

$$\bar{\nu}_{\mu} + \mu^- \rightarrow \bar{\nu}_e + e^-$$

is given approximately by $a_0^F \approx G_F k$ where k is the centre of mass momentum and G_F is Fermi's constant, with the value (in units $\hbar = c = 1$)

$$G_F \approx \frac{10^{-5}}{M_p^2}$$

where M_p is the proton mass. Assuming that k in part (i) can also be taken to be the CM momentum (in units $c = \hbar = 1$) estimate the CM energy (neglecting lepton masses) at which unitarity is violated in the theory. What actually happens? (Note: $\hbar \approx 200 (\text{MeV/c}) \text{fm}$).

4 L_x is a linear ordinary differential operator and $\psi(x)$ satisfies the equation $L_x\psi(x) = g(x)$ where g(x) is a known function. The functions $\phi_n(x)$ form a complete orthonormal set of eigenfunctions of L_x , with eigenvalues λ_n :

$$L_x\phi_n(x) = \lambda_n\phi_n(x).$$

Expanding $\psi(x)$ as a linear combination of the $\phi_n(x)$ via

$$\psi(x) = \sum_{n} a_n \phi_n(x),$$

show that

$$a_m = \frac{1}{\lambda_m} \int \phi_m^*(y) g(y) dy.$$

Deduce that the Green function for the equation $L_x \psi = g$ must be

$$G(x,y) = \sum_{n} \frac{\phi_n(x)\phi_n^*(y)}{\lambda_n} = \sum_{n} \frac{\langle x|n\rangle \langle n|y\rangle}{\lambda_n}.$$

Verify that this is correct by applying the operator L_x to G(x, y).

Use this approach to find the coordinate space Green function for the time independent Schrödinger equation.

5 (i) In first order time-dependent perturbation theory, the transition probability per unit time for a particle in the momentum eigenstate $| \mathbf{k}_i \rangle$ to scatter, via the time-independent potential V(r), into the momentum eigenstate $| \mathbf{k}_f \rangle$ is

$$\int 2\pi |\langle \boldsymbol{k}_f | V | \boldsymbol{k}_i \rangle|^2 \, \delta(E_i - E_f) \frac{d^3 \mathbf{k}_f}{(2\pi)^3}$$

where units $\hbar = 1$ are used (for a concise derivation see P79, Quarks and Leptons, Halzen & Martin, Wiley 1984). Writing

$$d^{3}\mathbf{k}_{f} = |\mathbf{k}_{f}|^{2} d |\mathbf{k}_{f}| d\Omega$$
 and $E_{f} = \mathbf{k}_{f}^{2}/2m$

show that $d^3\mathbf{k}_f = m | \mathbf{k}_f | dE_f d\Omega$, and hence show that the differential cross section is

$$\frac{d\sigma}{d\Omega} = \frac{m^2}{4\pi^2} \mid \langle f \mid V \mid i \rangle \mid^2$$

(ii) Show that

$$\int e^{i\boldsymbol{q}\cdot\boldsymbol{r}} \frac{e^{-r/a}}{r} d^3\boldsymbol{r} = \frac{4\pi}{\boldsymbol{q}^2 + a^{-2}}$$

By considering the limit $a \to \infty$, derive the Rutherford scattering cross section formula

$$\left(\frac{d\sigma}{d\Omega}\right)_R = \frac{\hbar^2 c^2 \alpha^2}{16E^2 \sin^4 \theta/2}$$

using Born Approximation for the Coulomb potential for two charges, one +e and one -e; here $E = \frac{1}{2}mv^2$ where v is the speed of the incoming particle and m is its mass; also, α is the fine structure constant and θ is the scattering angle (ie the angle between the incident wave vector and the final wave vector).