Graduate Particle Physics MT 2005

Scattering Theory Problem Set

1 Find the Born approximation to the differential cross section as a function of the angle of scattering for a central potential $V(r)=-V_{0}$ for $r \leq r_{0}, V(r)=0$ for $r>r_{0}$.

2 The potential for 'hard sphere' scattering is $V(r)=\infty$ for $r<r_{0}$ and $V(r)=0$ for $r>r_{0}$. (i) Show that the s-wave phase shift $\delta_{0}(k)$ is given by $\delta_{0}(k)=-k r_{0}$, and calculate the total $\ell=0$ cross section.
(ii) The 'reduced' radial wave function $u_{\ell}(r)$ is defined via $\psi(r, \theta, \phi)=R_{\ell}(r) Y_{\ell, m}(\theta, \phi)$, and $R_{\ell}(r)=u_{\ell}(r) / r$. Find the equation satisfied by u_{ℓ}, and show that for $r>r_{0}$ and $\ell=1$ it is satisfied by

$$
u_{1}(r)=C\left[\frac{\sin k r}{k r}-\cos k r+a\left(\frac{\cos k r}{k r}+\sin k r\right)\right]
$$

where C and a are constants. Show that the definition of the p-wave phase shift $\delta_{1}(k)$ implies that $\tan \delta_{1}(k)=a$, and determine a from the condition satisfied by $u_{1}(r)$ at $r=r_{0}$.
Show that, as k approaches zero, $\delta_{1}(k)$ behaves like $\left(k r_{0}\right)^{3}$.
3 The scattering amplitude $f(\theta, k)$ has the partial wave expansion

$$
f(\theta, k)=\frac{1}{k} \sum_{\ell} e^{i \delta_{\ell}} \sin \delta_{\ell}(2 \ell+1) P_{\ell}(\cos \theta)
$$

where the symbols have their usual meaning.
(i)Show
(a) $\sigma_{\text {tot }}=\sum_{\ell} \sigma_{\ell}$ where $\sigma_{\ell}=\frac{4 \pi}{k^{2}} \sin ^{2} \delta_{\ell} \cdot(2 \ell+1)$
(b) $\sigma_{t o t}=\frac{4 \pi}{k} \operatorname{Im} f(0, k)$.
(ii) In the 'Fermi theory' of lepton-lepton scattering the s-wave amplitude $a_{0} \equiv e^{i \delta_{0}} \sin \delta_{0} / k$ for the scattering process

$$
\bar{\nu}_{\mu}+\mu^{-} \rightarrow \bar{\nu}_{e}+e^{-}
$$

is given approximately by $a_{0}^{F} \approx G_{F} k$ where k is the centre of mass momentum and G_{F} is Fermi's constant, with the value (in units $\hbar=c=1$)

$$
G_{F} \approx \frac{10^{-5}}{M_{p}^{2}}
$$

where M_{p} is the proton mass. Assuming that k in part (i) can also be taken to be the CM momentum (in units $c=\hbar=1$) estimate the $C M$ energy (neglecting lepton masses) at which unitarity is violated in the theory. What actually happens? (Note: $\hbar \approx 200(\mathrm{MeV} / \mathrm{c}) \mathrm{fm})$.

Take $\hbar=c=1$ for the remainder of this question
(iii) According the the Standard Model of particle physics, Higgs bosons should interact with each other in the $\ell=0$ partial wave via an amplitude a_{0}^{H} which is of order $\frac{m_{H}^{2} G_{F}}{k}$ in magnitude, where m_{H} is the Higgs mass.
Estimate the upper limit on the Higgs mass.
(iv) The width Γ for the decay Higgs $\rightarrow W^{+}+W^{-}$is given, for $m_{H} \gg m_{W}$, by

$$
\Gamma=G_{F} m_{H}{ }^{3} / 8 \pi \sqrt{2} .
$$

At what value of m_{H} will this width be comparable to m_{H} itself, and what would this signify?
(v) The 'Breit-Wigner' resonance cross-section is given by

$$
\sigma_{r e s}(E)=\sigma\left(E_{R}\right) \frac{\Gamma^{2} / 4}{\left(E-E_{R}\right)^{2}+k^{2} \Gamma^{2} / 4}
$$

where E is the $C M$ energy of the particles forming (or emitted by) the resonance, k is the CM momentum, E_{R} is the resonance energy and Γ is a width parameter. Sketch $\sigma_{r e s}(E)$ as a function of E. Also sketch $\sigma_{\text {res }}(E)$ for the case (which is approximately that of the Z^{0}) in which $\Gamma=\gamma k^{2}$, where γ is a constant, assuming that $\gamma k_{R}^{3} \ll E_{R}$.

4 In first order time-dependent perturbation theory, the transition probability per unit time for a particle in the momentum eigenstate $\left|\boldsymbol{k}_{i}\right\rangle$ to scatter, via the time-independent potential $V(r)$, into the momentum eigenstate $\left|\boldsymbol{k}_{f}\right\rangle$ is

$$
\left.\int 2 \pi\left|\left\langle\boldsymbol{k}_{f}\right| V\right| \boldsymbol{k}_{i}\right\rangle\left.\right|^{2} \delta\left(E_{i}-E_{f}\right) \frac{d^{3} \mathbf{k}_{f}}{(2 \pi)^{3}}
$$

where units $\hbar=1$ are used (for a concise derivation see P79, Quarks and Leptons, Halzen \& Martin, Wiley 1984). Writing

$$
d^{3} \mathbf{k}_{f}=\left|\mathbf{k}_{f}\right|^{2} d\left|\mathbf{k}_{f}\right| d \Omega \quad \text { and } \quad E_{f}=\mathbf{k}_{f}^{2} / 2 m
$$

show that $d^{3} \mathbf{k}_{f}=m\left|\mathbf{k}_{f}\right| d E_{f} d \Omega$, and hence show that the differential cross section is

$$
\left.\frac{d \sigma}{d \Omega}=\frac{m^{2}}{4 \pi^{2}}|\langle f| V| i\right\rangle\left.\right|^{2}
$$

