Graduate Particle Physics MT 2005

Scattering Theory Problem Set

- 1 Find the Born approximation to the differential cross section as a function of the angle of scattering for a central potential $V(r) = -V_0$ for $r \leq r_0$, V(r) = 0 for $r > r_0$.
- 2 The potential for 'hard sphere' scattering is $V(r) = \infty$ for $r < r_0$ and V(r) = 0 for $r > r_0$. (i) Show that the s-wave phase shift $\delta_0(k)$ is given by $\delta_0(k) = -kr_0$, and calculate the total $\ell = 0$ cross section.

(ii) The 'reduced' radial wave function $u_{\ell}(r)$ is defined via $\psi(r, \theta, \phi) = R_{\ell}(r) Y_{\ell,m}(\theta, \phi)$, and $R_{\ell}(r) = u_{\ell}(r)/r$. Find the equation satisfied by u_{ℓ} , and show that for $r > r_0$ and $\ell = 1$ it is satisfied by

$$u_1(r) = C\left[\frac{\sin kr}{kr} - \cos kr + a\left(\frac{\cos kr}{kr} + \sin kr\right)\right]$$

where C and a are constants. Show that the definition of the p-wave phase shift $\delta_1(k)$ implies that $\tan \delta_1(k) = a$, and determine a from the condition satisfied by $u_1(r)$ at $r = r_0$. Show that, as k approaches zero, $\delta_1(k)$ behaves like $(kr_0)^3$.

3 The scattering amplitude $f(\theta, k)$ has the partial wave expansion

$$f(\theta, k) = \frac{1}{k} \sum_{\ell} e^{i\delta_{\ell}} \sin \delta_{\ell} (2\ell + 1) P_{\ell}(\cos \theta)$$

where the symbols have their usual meaning.

(i)Show

(a)
$$\sigma_{tot} = \sum_{\ell} \sigma_{\ell}$$
 where $\sigma_{\ell} = \frac{4\pi}{k^2} \sin^2 \delta_{\ell} (2\ell + 1)$

(b) $\sigma_{tot} = \frac{4\pi}{k} \operatorname{Im} f(0, k).$

(ii) In the 'Fermi theory' of lepton-lepton scattering the s-wave amplitude $a_0 \equiv e^{i\delta_0} \sin \delta_0/k$ for the scattering process

$$\bar{\nu}_{\mu} + \mu^- \rightarrow \bar{\nu}_e + e^-$$

is given approximately by $a_0^F \approx G_F k$ where k is the centre of mass momentum and G_F is Fermi's constant, with the value (in units $\hbar = c = 1$)

$$G_F \approx \frac{10^{-5}}{M_p^2}$$

where M_p is the proton mass. Assuming that k in part (i) can also be taken to be the CM momentum (in units $c = \hbar = 1$) estimate the CM energy (neglecting lepton masses) at which unitarity is violated in the theory. What actually happens? (Note: $\hbar \approx 200 (\text{MeV/c}) \text{fm}$).

Take $\hbar = c = 1$ for the remainder of this question

(iii) According the the Standard Model of particle physics, Higgs bosons should interact with each other in the $\ell = 0$ partial wave via an amplitude a_0^H which is of order $\frac{m_H^2 G_F}{k}$ in magnitude, where m_H is the Higgs mass.

Estimate the upper limit on the Higgs mass.

(iv) The width Γ for the decay Higgs $\rightarrow W^+ + W^-$ is given, for $m_H >> m_W$, by

$$\Gamma = G_F m_H^3 / 8\pi \sqrt{2}.$$

At what value of m_H will this width be comparable to m_H itself, and what would this signify? (v) The 'Breit-Wigner' resonance cross-section is given by

$$\sigma_{res}(E) = \sigma(E_R) \frac{\Gamma^2/4}{(E - E_R)^2 + k^2 \Gamma^2/4}$$

where E is the CM energy of the particles forming (or emitted by) the resonance, k is the CM momentum, E_R is the resonance energy and Γ is a width parameter. Sketch $\sigma_{res}(E)$ as a function of E. Also sketch $\sigma_{res}(E)$ for the case (which is approximately that of the Z^0) in which $\Gamma = \gamma k^2$, where γ is a constant, assuming that $\gamma k_R^3 \ll E_R$.

4 In first order time-dependent perturbation theory, the transition probability per unit time for a particle in the momentum eigenstate $| \mathbf{k}_i \rangle$ to scatter, via the time-independent potential V(r), into the momentum eigenstate $| \mathbf{k}_f \rangle$ is

$$\int 2\pi |\langle \mathbf{k}_f | V | \mathbf{k}_i \rangle|^2 \, \delta(E_i - E_f) \frac{d^3 \mathbf{k}_f}{(2\pi)^3}$$

where units $\hbar = 1$ are used (for a concise derivation see P79, Quarks and Leptons, Halzen & Martin, Wiley 1984). Writing

$$d^{3}\mathbf{k}_{f} = |\mathbf{k}_{f}|^{2} d |\mathbf{k}_{f}| d\Omega$$
 and $E_{f} = \mathbf{k}_{f}^{2}/2m$

show that $d^3\mathbf{k}_f = m | \mathbf{k}_f | dE_f d\Omega$, and hence show that the differential cross section is

$$\frac{d\sigma}{d\Omega} = \frac{m^2}{4\pi^2} \mid \langle f \mid V \mid i \rangle \mid^2.$$