Ordinary Differential Equations II

1. Find the general solution of

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y=10 \cos x
$$

2. Show that the general solution of

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=2 \mathrm{e}^{-x}+x^{3}+2 \cos x .
$$

is $y=\left(A+B x+x^{2}\right) \mathrm{e}^{-x}+\sin x+x^{3}-6 x^{2}+18 x-24$, where A, B are arbitrary constants.
3. Find the solution of

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=3 \mathrm{e}^{x}
$$

for which $y=3$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ at $x=0$.
4. Solve the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(\beta^{2}+1\right) y=\mathrm{e}^{x} \sin ^{2} x
$$

for general values of the real parameter β. Explain why this solution fails for $\beta=0$ and $\beta=2$ and find solutions for these values of β.
5. A mass m is constrained to move in a straight line and is attached to a spring of strength $\lambda^{2} m$ and a dashpot which produces a retarding force $-\alpha m v$, where v is the velocity of the mass. Find the steady state displacement of the mass when an amplitude-modulated periodic force $A m \cos p t \sin \omega t$ with $p \ll \omega$ and $\alpha \ll \omega$ is applied to it.

Show that for $\omega=\lambda$ the displacement of the amplitude-modulated wave is approximately given by

$$
-A \frac{\cos \omega t \sin (p t+\phi)}{\sqrt{4 \omega^{2} p^{2}+\alpha^{2} \omega^{2}}} \quad \text { where } \quad \cos \phi=\frac{2 \omega p}{\sqrt{4 \omega^{2} p^{2}+\alpha^{2} \omega^{2}}} .
$$

where A is a constant.
6. When a varying couple $I \cos n t$ is applied to a torsional pendulum with natural period $2 \pi / m$ and the moment of inertia I, the angle of the pendulum satisfies the equation of motion $\ddot{\theta}+m^{2} \theta=\cos n t$. The couple is first applied at $t=0$ when the pendulum is at rest in equilibrium. Show that in the subsequent motion the root mean square angular displacement is $1 /\left|m^{2}-n^{2}\right|$ when the average is taken over a time large compared with $1 /|m-n|$. Discuss the motion as $|m-n| \rightarrow 0$.
7. Verify that $y=x+1$ is a solution of

$$
\left(x^{2}-1\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+(x+1) \frac{\mathrm{d} y}{\mathrm{~d} x}-y=0 .
$$

Writing $y=(x+1) u$, show that $u^{\prime}=\mathrm{d} u / \mathrm{d} x$ satisfies

$$
\frac{\mathrm{d} u^{\prime}}{\mathrm{d} x}+\frac{3 x-1}{x^{2}-1} u^{\prime}=0
$$

Hence show that the general solution of the original equation is

$$
y=K\left(\frac{1}{4}(x+1) \ln \frac{x-1}{x+1}+\frac{1}{2}\right)+K^{\prime}(x+1)
$$

where K and K^{\prime} are arbitrary constants.
8. Find a continuous solution with continuous first derivative of the system

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=\sin x+f(x)
$$

subject to $y\left(-\frac{1}{2} \pi\right)=y(\pi)=0$, where

$$
f(x)=\left\{\begin{array}{ll}
0 & x \leq 0 \\
x^{2} & x>0
\end{array} .\right.
$$

[Hint: obtain a general solution for each of the cases $x<0$ and $x>0$ and then obtain relations between your four arbitrary constants by making the solutions agree at $x=0$.]

