Ordinary Differential Equations I

1. State the order of the following differential equations and whether they are linear or non-linear : (i) $\frac{d^2y}{dx^2} + k^2y = f(x)$ (ii) $\frac{d^2y}{dx^2} + 2y\frac{dy}{dx} = \sin x$ (iii) $\frac{dy}{dx} + y^2 = yx$.

- 2. Solve the following differential equations using the method stated:
 - (a) **Separable** (i) $\frac{dy}{dx} = xe^y/(1+x^2)$, y = 0 at x = 0. (ii) $\frac{dx}{dt} = (2tx^2+t)/t^2x x$)
 - (b) Almost separable $\frac{dy}{dx} = 2(2x+y)^2$
 - (c) Homogeneous $2\frac{\mathrm{d}y}{\mathrm{d}x} = (xy + y^2)/x^2$
 - (d) Homogeneous but for constants $\frac{dy}{dx} = (x+y-1)/(x-y-2)$
 - (e) Integrating Factor (i) $\frac{dy}{dx} + y/x = 3$, x = 0 at y = 0. (ii) $\frac{dx}{dt} + x \cos t = \sin 2t$
 - (f) Bernoulli $\frac{\mathrm{d}y}{\mathrm{d}x} + y = xy^{2/3}$.
- **3**. Solve the following first order differential equations :

(i)
$$\frac{dy}{dx} = \frac{x - y \cos x}{\sin x}$$

(ii) $(3x + x^2) \frac{dy}{dx} = 5y - 8$
(iii) $\frac{dy}{dx} + \frac{2x}{y} = 3$
(iv) $\frac{dy}{dx} + y/x = 2x^{3/2}y^{1/2}$
(v) $2\frac{dy}{dx} = \frac{y}{x} + \frac{y^3}{x^3}$
(vi) $xy\frac{dy}{dx} - y^2 = (x + y)^2 e^{-y/x}$
(vii) $x(x - 1)\frac{dy}{dx} + y = x(x - 1)^2$
(viii) $2x\frac{dy}{dx} - y = x^2$
(ix) $\frac{dx}{dt} = \cos(x + t), \ x = \pi/2 \text{ at } t = 0$
(x) $\frac{dy}{dx} = \frac{x - y}{x - y + 1}$
(xi) $\frac{dx}{dy} = \cos 2y - x \cot y, \ x = 1/2 \text{ at } y = \pi/2$

4. L_1 is the differential operator

$$L_1 = \left(\frac{\mathrm{d}}{\mathrm{d}x} + 2\right).$$

Evaluate (i) $L_1 x^2$, (ii) $L_1 (x e^{2x})$, (iii) $L_1 (x e^{-2x})$.

5. L_2 is the differential operator

$$L_2 = \left(\frac{\mathrm{d}}{\mathrm{d}x} - 1\right).$$

Express the operator $L_3 = L_2 L_1$ in terms of $\frac{d^2}{dx^2}$, $\frac{d}{dx}$, etc. Show that $L_1 L_2 = L_2 L_1$.

Complex Numbers & ODEs : Problem Set 3

6. By introducing a new variable Y = (4y - x), or otherwise, show that the solution of the o.d.e.

$$\frac{\mathrm{d}y}{\mathrm{d}x} - 16y^2 + 8xy = x^2$$

satisfies $4y - x - \frac{1}{2} = A(4y - x + \frac{1}{2})e^{4x}$, where A is an arbitrary constant.

7. Solve the o.d.e.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(3x^2 + 2xy + y^2)\sin x - (6x + 2y)\cos x}{(2x + 2y)\cos x}.$$

[Hint: look for a function f(x, y) whose differential df gives the o.d.e.]

8. The equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + ky = y^n \sin x,$$

where k and n are constants, is linear and homogeneous for n = 1. State a property of the solutions to this equation for n = 1 that is **not** true for $n \neq 1$.

Solve the equation for $n \neq 1$ by making the substitution $z = y^{1-n}$.