## Ordinary Differential Equations I

1. State the order of the following differential equations and whether they are linear or non-linear: (i) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+k^{2} y=f(x)$ (ii) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\sin x$ (iii) $\frac{\mathrm{d} y}{\mathrm{~d} x}+y^{2}=y x$.
2. Solve the following differential equations using the method stated:
(a) Separable (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=x \mathrm{e}^{y} /\left(1+x^{2}\right), y=0$ at $x=0$. (ii) $\left.\frac{\mathrm{d} x}{\mathrm{~d} t}=\left(2 t x^{2}+t\right) / t^{2} x-x\right)$
(b) Almost separable $\frac{\mathrm{d} y}{\mathrm{~d} x}=2(2 x+y)^{2}$
(c) Homogeneous $2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left(x y+y^{2}\right) / x^{2}$
(d) Homogeneous but for constants $\frac{\mathrm{d} y}{\mathrm{~d} x}=(x+y-1) /(x-y-2)$
(e) Integrating Factor (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}+y / x=3, x=0$ at $y=0$. (ii) $\frac{\mathrm{d} x}{\mathrm{~d} t}+x \cos t=\sin 2 t$
(f) Bernoulli $\frac{\mathrm{d} y}{\mathrm{~d} x}+y=x y^{2 / 3}$.
3. Solve the following first order differential equations :
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x-y \cos x}{\sin x}$
(ii) $\left(3 x+x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=5 y-8$
(iii) $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2 x}{y}=3$
(iv) $\frac{\mathrm{d} y}{\mathrm{~d} x}+y / x=2 x^{3 / 2} y^{1 / 2}$
(v) $2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{y}{x}+\frac{y^{3}}{x^{3}}$
(vi) $x y \frac{\mathrm{~d} y}{\mathrm{~d} x}-y^{2}=(x+y)^{2} \mathrm{e}^{-y / x}$
(vii) $x(x-1) \frac{\mathrm{d} y}{\mathrm{~d} x}+y=x(x-1)^{2}$
(viii) $2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y=x^{2}$
(ix) $\frac{\mathrm{d} x}{\mathrm{~d} t}=\cos (x+t), x=\pi / 2$ at $t=0$
(x) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x-y}{x-y+1}$
(xi) $\frac{\mathrm{d} x}{\mathrm{~d} y}=\cos 2 y-x \cot y, x=1 / 2$ at $y=\pi / 2$
4. $L_{1}$ is the differential operator

$$
L_{1}=\left(\frac{\mathrm{d}}{\mathrm{~d} x}+2\right) .
$$

Evaluate (i) $L_{1} x^{2}$, (ii) $L_{1}\left(x \mathrm{e}^{2 x}\right)$, (iii) $L_{1}\left(x \mathrm{e}^{-2 x}\right)$.
5. $L_{2}$ is the differential operator

$$
L_{2}=\left(\frac{\mathrm{d}}{\mathrm{~d} x}-1\right) .
$$

Express the operator $L_{3}=L_{2} L_{1}$ in terms of $\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}, \frac{\mathrm{~d}}{\mathrm{~d} x}$, etc. Show that $L_{1} L_{2}=L_{2} L_{1}$.
6. By introducing a new variable $Y=(4 y-x)$, or otherwise, show that the solution of the o.d.e.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}-16 y^{2}+8 x y=x^{2}
$$

satisfies $4 y-x-\frac{1}{2}=A\left(4 y-x+\frac{1}{2}\right) \mathrm{e}^{4 x}$, where $A$ is an arbitrary constant.
7. Solve the o.d.e.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(3 x^{2}+2 x y+y^{2}\right) \sin x-(6 x+2 y) \cos x}{(2 x+2 y) \cos x} .
$$

[Hint: look for a function $f(x, y)$ whose differential $\mathrm{d} f$ gives the o.d.e.]
8. The equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+k y=y^{n} \sin x
$$

where $k$ and $n$ are constants, is linear and homogeneous for $n=1$. State a property of the solutions to this equation for $n=1$ that is not true for $n \neq 1$.

Solve the equation for $n \neq 1$ by making the substitution $z=y^{1-n}$.

