

$$
L f=a_{2} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}}+a_{1} \frac{\mathrm{~d} f}{\mathrm{~d} x}+a_{0} f=h(x)
$$

Complementary function

The number of independent complementary functions is the number of integration constants - equal to the order of the differential equation

1) Construct f_{0} the general solution to the homogeneous equation $L f_{0}=0$
2) Find a solution, f_{1}, to the inhomogeneous equation $L f_{1}=h$

Particular integral

General solution : $f_{0}+f_{1}$

For a nth order differential equation need n independent solutions to $\mathrm{Lf}=0$ to specify the complementary function

Second order linear equation with constant coefficients

$$
L f=a_{2} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}}+a_{1} \frac{\mathrm{~d} f}{\mathrm{~d} x}+a_{0} f=h(x) .
$$

Complementary function

$$
L f=a_{2} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}}+a_{1} \frac{\mathrm{~d} f}{\mathrm{~d} x}+a_{0} f=0
$$

$$
\text { Try } y=\mathrm{e}^{m x}
$$

$$
m_{ \pm} \equiv \frac{-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{2} a_{0}}}{2 a_{2}}, \quad \text { "Auxiliary" equation }
$$

Complementary function

$$
y=A_{+} \mathrm{e}^{m_{+} x}+A_{-} \mathrm{e}^{m_{-} x}
$$

Two constants of integration

Ex $1 \quad \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y=0$.

Auxiliary eq. $\quad(m+3)(m+1)=0 \Rightarrow C F$ is $y=A \mathrm{e}^{-3 x}+B \mathrm{e}^{-x}$

$$
\begin{array}{|lll}
\text { If } \mathrm{y}(0)=2, \mathrm{y}^{\prime}(0)=0 & \Rightarrow A+B=2, \quad-3 A-B=0 & \begin{array}{l}
\text { Initial } \\
\text { conditions }
\end{array} \\
\mathrm{A}=-1, \mathrm{~B}=3 & \Rightarrow y=-\mathrm{e}^{-3 x}+3 \mathrm{e}^{-x}
\end{array}
$$

Ex 2

$$
L y=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+5 y=0
$$

Auxiliary eq. $m^{2}+2 m+5=0$

Complex?

$$
\text { i.e. } \quad m=\frac{1}{2}(-2 \pm \sqrt{4-20})=-1 \pm 2 \mathrm{i} \quad \Rightarrow \mathrm{CF} \text { is } y=A \mathrm{e}^{(-1+2 \mathrm{i}) x}+B \mathrm{e}^{(-1-2 \mathrm{i})}
$$

But L is a real operator $\Rightarrow 0=\mathfrak{R e}(L y)=L[\mathfrak{R e}(y)]$
i.e. $\mathfrak{R e}(y)$ is a solution $($ as is $\mathfrak{I} \mathrm{m}(y)) \Rightarrow \mathfrak{R e}(y)=\mathrm{e}^{-x}\left[A^{\prime} \cos (2 x)+B^{\prime} \sin (2 x)\right]$.

Find the solution for which $y(0)=5$ and $\quad(\mathrm{d} y / \mathrm{d} x)_{0}=0$

$$
\begin{aligned}
& 5=A^{\prime} \\
& 0=-A^{\prime}+2 B^{\prime} \Rightarrow B^{\prime}=\frac{5}{2} \Rightarrow y=\mathrm{e}^{-x}\left[5 \cos (2 x)+\frac{5}{2} \sin (2 x)\right] .
\end{aligned}
$$

Factorisation of operators

We wish to solve $\quad L f=a_{2} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}}+a_{1} \frac{\mathrm{~d} f}{\mathrm{~d} x}+a_{0} f=0$.
We did this by trying $y=\mathrm{e}^{m x}$
$\square a_{2} m^{2}+a_{1} m+a_{0}=a_{2}\left(m-m_{+}\right)\left(m-m_{-}\right)=0 . \quad m_{ \pm}=\frac{-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{2} a_{0}}}{2 a_{2}}$
This is equivalent to factorising the equation

$$
\begin{aligned}
\left(\frac{\mathrm{d}}{\mathrm{~d} x}-m_{-}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}-m_{+}\right) f & =\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}-\left(m_{-}+m_{+}\right) \frac{\mathrm{d} f}{\mathrm{~d} x}+m_{-} m_{+} f \\
& =\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}+\frac{a_{1}}{a_{2}} \frac{\mathrm{~d} f}{\mathrm{~d} x}+\frac{a_{0}}{a_{2}} \equiv \frac{L f}{a_{2}}
\end{aligned}
$$

Now we can see why the CF is made up of exponentials because :

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} x}-m_{-}\right) \mathrm{e}^{m_{-} x}=0 \quad ; \quad\left(\frac{\mathrm{d}}{\mathrm{~d} x}-m_{+}\right) \mathrm{e}^{m_{+} x}=0
$$

Factorisation of operators and repeated roots

$$
L f=a_{2} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}}+a_{1} \frac{\mathrm{~d} f}{\mathrm{~d} x}+a_{0} f=0
$$

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} x}-m_{-}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}-m_{+}\right) f=0 \quad m_{ \pm}=\frac{-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{2} a_{0}}}{2 a_{2}}
$$

What happens if $a_{1}^{2}-4 a_{2} a_{0}=0$ and $m_{+}=m_{-}=m$?

$$
L f=\left(\frac{\mathrm{d}}{\mathrm{~d} x}-m\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}-m\right) f
$$

$e^{m x}$ gives one solution $: L\left(\mathrm{e}^{m x}\right)=\left(\frac{\mathrm{d}}{\mathrm{d} x}-m\right)\left(\frac{\mathrm{d}}{\mathrm{d} x}-m\right) \mathrm{e}^{m x}=0$
$x e^{m x}$ gives the second independent solution:

$$
L\left(x \mathrm{e}^{m x}\right)=\left(\frac{\mathrm{d}}{\mathrm{~d} x}-m\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}-m\right) x \mathrm{e}^{m x}=\left(\frac{\mathrm{d}}{\mathrm{~d} x}-m\right) \mathrm{e}^{m x}=0
$$

$$
y=A \mathrm{e}^{m x}+B x \mathrm{e}^{m x}
$$

Ex $4 \quad \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=0$.

Auxiliary equation $(m+1)^{2}=0$

$$
\Rightarrow y=A \mathrm{e}^{-x}+B x \mathrm{e}^{-x}
$$

Ex $5 \quad \frac{\mathrm{~d}^{4} y}{\mathrm{~d} x^{4}}-2 \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}+2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=0$.

Auxiliary equation $(m-1)^{2}(m-i)(m+i)=0$

$$
\square y=\mathrm{e}^{x}(A+B x)+C \cos x+D \sin x
$$

