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Differential Equations

e.g.

Differential operators :

Functions :    map numbers numbers

Operators :    map functions functions
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Convenient to name operator

Differential operators

+ Initial conditions
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( ) 3 is first order
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( ) 3 is second order
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( ) 4 is second order
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Order of a differential operator

Linear operator If  ( ) ( ) ( )L f g L f L g! " ! "+ = + ,

d
and

d

f
f f f

x
!" "

1
 andf
f
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e.g. are linear

f f !" + are not linear

then L is a linear operator

, real or complex numbers! "



Suppose f and g are solutions to ( ) 0 for different initial conditionsL y =

L(If L linear then    ) ( ) ( ) 0f g L f L g! " ! "+ = + =

i.e. a linear combination of solutions of a linear operator is also a solution –

“principle of superposition”

The principle of superposition

. . ( ) 0, ( ) 0i e L f L g= =

f g! "+Consider the Linear Combination :



Inhomogeneous terms

( ) ( )L f h x=

  

 

Sometimes called “driving” term

d
sin
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f
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Solution to differential equations

( ) ( )L f h x=

0 01) Construct   the general solution to the homogeneous equation 0Lff =

112) Find a solution, , to the inhomogeneous equation Lff h=

  

 

Complementary function

Particular integral

0 1
General solution : f f+

For a nth order differential equation need n independent solutions to Lf=0 to 
specify the complementary function

The number of independent
complementary functions is 
the number of integration 
constants – equal to the order
of the differential equation



First order linear equations

d
General form :  ( ) ( )

d

f
q x f h x

x
+ = .

  
Look for a function I(x) such that   I(x)

df

dx
+ I(x)q(x) f !

dIf

dx
= I(x)h(x)

Integrating factor

  

Solution  :  f (x) =
1

I(x)
I(x ')h(x ')dx '

x
0

x

!

Easy to solve

Solution: CF
  

dIf

dx
= 0 is If = const

PI
  

I(x) f (x) = I(x ')h(x ')dx '

x

!



First order linear equations

d
General form :  ( ) ( )

d

f
q x f h x
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Look for a function  such that  
d

I(x) I(x) ( ) ( ) ( ) (
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f dIf
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x dx
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Integrating factor
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Solution  :  

)
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x

f x I x h x dx
I x

= !

First order :
1 integration constant (CF)

  

! ln(I(x)) = q(x ')dx '

x

" ! I(x) = e
q( x ')dx '

x

"

“Integrating factor”

Easy to solve

  
 I(x)q(x) =

dI

dx
   We have
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Plugging this into the form of the solution we have :
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Writing in “standard” form :



First order nonlinear equations

Although no general method for solution is available, there are several cases of 
physically relevant nonlinear equations which can be solved analytically :

Separable equations
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