Differential Equations

$$
\text { e.g. } \frac{\mathrm{d} f}{\mathrm{~d} x}+x f=\sin x
$$

+ Initial conditions

Differential operators

Functions: map numbers \rightarrow numbers
Operators: map functions \rightarrow functions
Differential operators :

Convenient to name operator

$$
x \rightarrow \mathrm{e}^{x}
$$

$$
f \rightarrow \alpha f ; f \rightarrow 1 / f ; f \rightarrow f+\alpha
$$

$$
\left.f \rightarrow \frac{\mathrm{~d} f}{\mathrm{~d} x} ; f \rightarrow \frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}} ; f \rightarrow 2 \frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}}+f \frac{\mathrm{~d} f}{\mathrm{~d} x} ; \ldots\right)
$$

$$
\text { e.g. } \quad L(f): \quad f \rightarrow \frac{\mathrm{~d} f}{\mathrm{~d} x}
$$

Order of a differential operator

$$
\begin{aligned}
& L_{1}(f) \equiv \frac{\mathrm{d} f}{\mathrm{~d} x}+3 f \quad \text { is first order, } \\
& L_{2}(f) \equiv \frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}+3 f \quad \text { is second order, } \\
& L_{3}(f) \equiv \frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}+4 \frac{\mathrm{~d} f}{\mathrm{~d} x} \quad \text { is second order. }
\end{aligned}
$$

Linear operator
If $L(\alpha f+\beta g)=\alpha \alpha^{\alpha, \beta} L^{\text {real or complex nu }}+\beta L(g)$,
then L is a linear operator
e.g. $\quad f \rightarrow \frac{\mathrm{~d} f}{\mathrm{~d} x}$ and $f \rightarrow \alpha f$

$$
f \rightarrow \frac{1}{f} \text { and } f \rightarrow f+\alpha \quad \text { are not linear }
$$

The principle of superposition

Suppose f and g are solutions to $L(y)=0$ for different initial conditions

$$
\text { i.e. } \quad L(f)=0, \quad L(g)=0
$$

Consider the Linear Combination: $\quad \alpha f+\beta g$

If L linear then $\mathrm{L}(\alpha f+\beta g)=\alpha L(f)+\beta L(g)=0$
i.e. a linear combination of solutions of a linear operator is also a solution "principle of superposition"

Inhomogeneous terms

$$
L(f)=h(x)
$$

e.g. $\frac{\mathrm{d} f}{\mathrm{~d} x}+x f=\sin x$

Sometimes called "driving" term

Solution to differential equations

$$
L(f)=h(x)
$$

Complementary function

1) Construct f_{0} the general solution to the homogeneous equation $L f_{0}=0$
2) Find a solution, f_{1}, to the inhomogeneous equation $L f_{1}=h$

Particular integral

General solution : $f_{0}+f_{1}$

For a nth order differential equation need n independent solutions to $\mathrm{Lf}=0$ to specify the complementary function

First order linear equations

$$
\text { General form : } \frac{\mathrm{d} f}{\mathrm{~d} x}+q(x) f=h(x)
$$

Integrating factor
Look for a function $\mathrm{I}(\mathrm{x})$ such that $\mathrm{I}(\mathrm{x}) \frac{\mathrm{d} f}{\mathrm{~d} x}+I(x) q(x) f \equiv \frac{d I f}{d x}=I(x) h(x)$

Solution: CF $\quad \frac{d I f}{d x}=0 \quad$ is $\quad I f=$ const
PI $\quad \mathrm{I}(\mathrm{x}) f(x)=\int^{x} I\left(x^{\prime}\right) h\left(x^{\prime}\right) d x^{\prime}$
Solution : $f(x)=\frac{1}{I(x)} \int_{x_{0}}^{x} I\left(x^{\prime}\right) h\left(x^{\prime}\right) d x^{\prime}$

First order linear equations

$$
\text { General form : } \frac{\mathrm{d} f}{\mathrm{~d} x}+q(x) f=h(x)
$$

Integrating factor
Look for a function $\mathrm{I}(\mathrm{x})$ such that $\mathrm{I}(\mathrm{x}) \frac{\mathrm{d} f}{\mathrm{~d} x}+I(x) q(x) f \equiv \frac{d I f}{d x}=I(x) h(x)$

Ex1 Solve
 $$
2 x \frac{\mathrm{~d} f}{\mathrm{~d} x}-f=x^{2}
$$

Writing in "standard" form : $\quad \frac{\mathrm{d} f}{\mathrm{~d} x}-\frac{f}{2 x}=\frac{1}{2} x$

$$
\text { so } q=-\frac{1}{2 x} \text { and } I=\mathrm{e}^{-\frac{1}{2} \ln x}=\frac{1}{\sqrt{x}}
$$

Plugging this into the form of the solution we have :

$$
f=\frac{1}{2} \sqrt{x} \int_{x_{0}}^{x} \sqrt{x^{\prime}} \mathrm{d} x^{\prime}=\frac{1}{3}\left(x^{2}-x_{0}^{3 / 2} x^{1 / 2}\right)
$$

First order nonlinear equations

Although no general method for solution is available, there are several cases of physically relevant nonlinear equations which can be solved analytically :

Separable equations

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{f(x)}{g(y)}
$$

Solution :

$$
\int g(y) d y=\int f(x) d x
$$

$$
\begin{aligned}
& \text { Ex } 1 \\
& \qquad \frac{\mathrm{~d} y}{\mathrm{~d} x}=y^{2} \mathrm{e}^{x} \quad \Longrightarrow \int \frac{d y}{y^{2}}=\int \mathrm{e}^{x} \mathrm{~d} x \\
& \text { i.e } \quad \frac{-1}{y}=\mathrm{e}^{x}+c \quad \text { or } \quad y=\frac{-1}{\left(\mathrm{e}^{x}+c\right)}
\end{aligned}
$$

