Complex Numbers & ODEs : Problem Set 2

Complex Numbers II

- **1**. Write the following in the form a + ib, where a and b are real:
 - (i) e^{i} , (ii) \sqrt{i} , (iii) $\ln i$, (iv) $\cos i$, (v) $\sin i$, (vi) $\sinh(x + iy)$, (vi) $ln\frac{1}{2}(\sqrt{3} + i)$, (vii) $(1 + i)^{iy}$. (Note $i = e^{i\pi/2}$)

2. Sketch the curves C₁ and C₂ in the Argand diagram for z defined respectively by $\arg[(z-4)/(z-1)] = \pi/2$ and $\arg[(z-4)/(z-1)] = 3\pi/2$.

3. Prove that

$$\sum_{r=1}^{n} \binom{n}{r} \sin 2r\theta = 2^{n} \sin n\theta \cos^{n}\theta \quad \text{where} \quad \binom{n}{r} \equiv \frac{n!}{(n-r)!r!}$$

[Hint: express the left side as $Im\left(\sum \binom{n}{r}e^{i2r\theta}\right)$ and use the binomial expansion.]

4. Show that

$$\sum_{n=0}^{\infty} 2^{-n} \cos n\theta = \frac{1 - \frac{1}{2} \cos \theta}{\frac{5}{4} - \cos \theta}.$$

5. Find the 5th roots of unity and plot them on an Argand diagram. What is the sum of the roots?

- **6**. Solve the equation $z^4 = -4i$.
- 7. Show that the equation with the four roots $z = \frac{1}{2}(\pm\sqrt{3}\pm i)$ is $z^4 z^2 + 1 = 0$.

8. Show that the equation $(z + i)^n - (z - i)^n = 0$ has roots $z = \cot(r\pi/n)$, where $r = 1, 2, \ldots, n-1$.

9. Find the roots of the equation $(z-1)^n + (z+1)^n = 0$. Hence solve the equation $x^3 + 15x^2 + 15x + 1 = 0$.

10. Prove that the sum and product of the roots, x_i , of the polynomial $a_n x^n + \cdots + a_0$ satisfy $\sum x_i = -a_{n-1}/a_n$ and $\prod x_i = (-1)^n a_0/a_n$. Hence find the sum and the product of the roots of $P = x^3 - 6x^2 + 11x - 6$. Show that x = 1 is a root and by writing P = (x - 1)Q, where Q is a quadratic, find the other two roots. Verify that the roots have the expected sum and product.

11. Show that the equation $(z+1)^n - e^{2in\theta}(z-1)^n = 0$ has root $z = -i \cot(\theta + r\pi/n)$. Show that

$$\prod_{r=1}^{n} \cot\left(\theta + \frac{r\pi}{n}\right) = \begin{cases} (-1)^{n/2} & \text{for } n \text{ even} \\ (-1)^{(n-1)/2} \cot n\theta & \text{for } n \text{ odd.} \end{cases}$$

12. Find all the roots, real and complex, of the equation $z^3 - 1 = 0$. If ω is one of the complex roots, prove that $1 + \omega + \omega^2 = 0$. Find the sums of the following series:

$$S_1 = 1 + \frac{x^3}{3!} + \frac{x^6}{6!} + \dots; \quad S_2 = x + \frac{x^4}{4!} + \frac{x^7}{7!} + \dots; \quad S_3 = \frac{x^2}{2!} + \frac{x^5}{5!} + \frac{x^8}{8!} + \dots$$

[Hint: note that $S_1 + S_2 + S_3 = e^x$ and calculate $e^{\omega x}$ and $e^{\omega^2 x}$.]