Complex Numbers II

1. Write the following in the form $a+\mathrm{i} b$, where a and b are real:
(i) e^{i},
(ii) $\sqrt{\mathrm{i}}$,
(iii) $\ln \mathrm{i}, \quad$ (iv) $\cos \mathrm{i}, \quad(\mathrm{v}) \sin \mathrm{i}$,
(vi) $\sinh (x+\mathrm{i} y)$, (vi) $\ln \frac{1}{2}(\sqrt{3}+i)$, (vii) $(1+i)^{i y}$.
(Note $i=e^{i \pi / 2}$)
2. Sketch the curves C_{1} and C_{2} in the Argand diagram for z defined respectively by $\arg [(z-4) /(z-1)]=\pi / 2$ and $\arg [(z-4) /(z-1)]=3 \pi / 2$.
3. Prove that

$$
\sum_{r=1}^{n}\binom{n}{r} \sin 2 r \theta=2^{n} \sin n \theta \cos ^{n} \theta \quad \text { where } \quad\binom{n}{r} \equiv \frac{n!}{(n-r)!r!}
$$

[Hint: express the left side as $\operatorname{Im}\left(\sum\binom{n}{r} \mathrm{e}^{\mathrm{i} 2 r \theta}\right)$ and use the binomial expansion.]
4. Show that

$$
\sum_{n=0}^{\infty} 2^{-n} \cos n \theta=\frac{1-\frac{1}{2} \cos \theta}{\frac{5}{4}-\cos \theta}
$$

5. Find the 5th roots of unity and plot them on an Argand diagram. What is the sum of the roots?
6. Solve the equation $z^{4}=-4 i$.
7. Show that the equation with the four roots $z=\frac{1}{2}(\pm \sqrt{3} \pm i)$ is $z^{4}-z^{2}+1=0$.
8. Show that the equation $(z+\mathrm{i})^{n}-(z-\mathrm{i})^{n}=0$ has roots $z=\cot (r \pi / n)$, where $r=1,2, \ldots, n-1$.
9. Find the roots of the equation $(z-1)^{n}+(z+1)^{n}=0$. Hence solve the equation $x^{3}+15 x^{2}+15 x+1=0$.
10. Prove that the sum and product of the roots, x_{i}, of the polynomial $a_{n} x^{n}+\cdots+a_{0}$ satisfy $\sum x_{i}=-a_{n-1} / a_{n}$ and $\prod x_{i}=(-1)^{n} a_{0} / a_{n}$. Hence find the sum and the product of the roots of $P=x^{3}-6 x^{2}+11 x-6$. Show that $x=1$ is a root and by writing $P=(x-1) Q$, where Q is a quadratic, find the other two roots. Verify that the roots have the expected sum and product.
11. Show that the equation $(z+1)^{n}-\mathrm{e}^{2 i n \theta}(z-1)^{n}=0$ has root $z=-\mathrm{i} \cot (\theta+r \pi / n)$. Show that

$$
\prod_{r=1}^{n} \cot \left(\theta+\frac{r \pi}{n}\right)= \begin{cases}(-1)^{n / 2} & \text { for } n \text { even } \\ (-1)^{(n-1) / 2} \cot n \theta & \text { for } n \text { odd }\end{cases}
$$

12. Find all the roots, real and complex, of the equation $z^{3}-1=0$. If ω is one of the complex roots, prove that $1+\omega+\omega^{2}=0$. Find the sums of the following series:

$$
S_{1}=1+\frac{x^{3}}{3!}+\frac{x^{6}}{6!}+\cdots ; \quad S_{2}=x+\frac{x^{4}}{4!}+\frac{x^{7}}{7!}+\cdots ; \quad S_{3}=\frac{x^{2}}{2!}+\frac{x^{5}}{5!}+\frac{x^{8}}{8!}+\cdots
$$

[Hint: note that $S_{1}+S_{2}+S_{3}=\mathrm{e}^{x}$ and calculate $\mathrm{e}^{\omega x}$ and $\mathrm{e}^{\omega^{2} x}$.]

