Complex Numbers
 and
 Ordinary Differential Equations

Prof. G.G. Ross
Oxford University
Michaelmas Term 2008

Books: The material of this course is covered well in many texts on mathematical methods for science students, for example Mathematical Methods for Physics and Engineering, Riley, Hobson, Bence (Cambridge University Press) or Mathematical Methods in the Physical Sciences, 2nd/3rd ed., Boas (Wiley) both of which provide many examples. A more elementary book is Stephenson, Mathematical Methods for Science Students, 2nd ed. (Longmans). The book by Louis Lyons, All you ever wanted to know about Mathematics but were afraid to ask (Vol I, CUP, 1995) also provides an excellent treatment of the subject. I am grateful to Professor Binney for providing the TeX notes of his course which provided the basis for these notes.

1 Complex Numbers I : Friendly Complex Numbers

Complex numbers are widely used in physics. The solution of physical equations is often made simpler through the use of complex numbers and we will study examples of this when solving differential equations later in this course. Another particularly important application of complex numbers is in quantum mechanics where they play a central role representing the state, or wave function, of a quantum system. In this course in the I will give a straightforward introduction to complex numbers and to simple functions of a complex variable. The first Section "Friendly Complex Numbers" is intended to provide a simple introduction to complex numbers suitable for those who have not studied the subject.

1.1 Why complex numbers?

The obvious first question is "Why introduce complex numbers?". The logical progression follows simply from the need to solve equations of increasing complexity. Thus we start with natural numbers (positive integers) $1,2,3, \ldots$

But $20+y=12 \quad \Rightarrow \quad y=-8 \quad \rightarrow \quad$ integers $\ldots,-3,-2,-1,0,1,2, \ldots$
But $4 x=6 \quad \Rightarrow \quad x=\frac{3}{2} \quad \rightarrow$ rationals
But $x^{2}=2 \quad \Rightarrow \quad x=\sqrt{2} \quad \rightarrow$ irrationals
But $x^{2}=-1 \quad \Rightarrow \quad x=\mathrm{i} \quad \rightarrow$ complex nos
Multiples of i are called pure imaginary numbers. A general complex number is the sum of a multiple of 1 and a multiple of i such as $z=2+3 \mathrm{i}$. We often use the notation $z=a+\mathrm{i} b$, where a and b are real. (Sometimes the symbol j instead if i is used - for example in circuit theory where i is reserved for a current.)

We define operators for extracting a, b from $z: a \equiv \Re \mathrm{e}(z), b \equiv \Im \mathrm{~m}(z)$. We call a the real part and b the imaginary part of z.

1.2 Argand diagram (complex plane)

Complex numbers can be represented in the (x, y) plane. Thus the complex number $z=a+\mathrm{i} b \rightarrow$ point (a, b) in the "complex" plane (or "Argand diagram"):

Using polar co-ordinates the point (a, b) can equivalently be represented by its (r, θ) values. Thus with $\arg (z) \equiv \theta=\arctan (b / a)$ we have

$$
\begin{equation*}
z=|z|(\cos \theta+\mathrm{i} \sin \theta) \equiv r(\cos \theta+\mathrm{i} \sin \theta) \tag{1.1}
\end{equation*}
$$

Note that the length or modulus of the vector from the origin to the point (a, b) is given by

$$
\begin{equation*}
|z| \equiv r=\sqrt{a^{2}+b^{2}} \tag{1.2}
\end{equation*}
$$

As we will show in the next Section de Moivre's theorem states $\cos \theta+\mathrm{i} \sin \theta=\mathrm{e}^{\mathrm{i} \theta}$, the exponential of a complex argument, so an equivalent way of writing the polar form is

$$
\begin{equation*}
z=r \mathrm{e}^{\mathrm{i} \theta} \tag{1.3}
\end{equation*}
$$

It is important to get used to this form as it proves to be very useful in many applications. Note that there are an infinite number of values of θ which give the same values of $\cos \theta$ and $\sin \theta$ because adding an integer multiple of 2π to θ does not change them. Often one gives only one value of θ when specifying the complex number in polar form but, as we shall see, it is important to include this ambiguity when taking roots of a complex number.

It also proves useful to define the complex conjugate z^{*} of z by reversing the sign of i, i.e.

$$
\begin{equation*}
z^{*} \equiv a-\mathrm{i} b \tag{1.4}
\end{equation*}
$$

The complex numbers z^{*} and $-z$ are also shown in the figure.

Example 1.1

Express $z \equiv a+i b=-1-i$ in polar form. Here $r=\sqrt{2}$ and $\arctan (b / a)=$ $\arctan 1=\pi / 4$. However it is necessary to identify the correct quadrant for θ. Since a and b are both negative so too are $\cos \theta$ and $\sin \theta$. Thus θ lies in the third quadrant $\theta=\frac{5 \pi}{4}+2 n \pi$ where n is any positive or negative integer. Thus finally we have $z=\sqrt{2} \mathrm{e}^{\mathrm{i} \frac{5 \pi}{4}+2 n \pi}, n=0, \pm 1, \pm 2, \cdots$, where we have made the ambiguity in the phase explicit.

1.3 Addition and subtraction

Addition and subtraction of complex numbers follow the same rules as for ordinary numbers except that the real and imaginary parts are treated separately:

$$
\begin{equation*}
z_{1} \pm z_{2} \equiv\left(a_{1} \pm a_{2}\right)+\mathrm{i}\left(b_{1} \pm b_{2}\right) \tag{1.5}
\end{equation*}
$$

Since the complex numbers can be represented in the Argand diagram by vectors, addition and subtraction of complex numbers is the same as addition and subtraction of vectors as is shown in Fig .

1.4 Multiplication and division

Remembering that $\mathrm{i}^{2}=-1$ it is easy to define multiplication for complex numbers :

$$
\begin{align*}
z_{1} z_{2} & =\left(a_{1}+\mathrm{i} b_{1}\right)\left(a_{2}+\mathrm{i} b_{2}\right) \\
& \equiv\left(a_{1} a_{2}-b_{1} b_{2}\right)+\mathrm{i}\left(a_{1} b_{2}+b_{1} a_{2}\right) \tag{1.6}
\end{align*}
$$

Note that the product of a complex number and its complex conjugate, $|z|^{2} \equiv$ $z z^{*}=\left(a^{2}+b^{2}\right)$, is real (and $\left.\geq 0\right)$ and, c.f. eq (1.2), is given by the square of the length of the vector representing the complex number $z z^{*} \equiv|z|^{2}=\left(a^{2}+b^{2}\right)$.

It is necessary to define division also. This is done by multiplying the numerator and denominator of the fraction by the complex conjugate of the denominator :

$$
\begin{equation*}
\frac{z_{1}}{z_{2}}=\frac{z_{1} z_{2}^{*}}{z_{2} z_{2}^{*}}=\frac{z_{1} z_{2}^{*}}{\left|z_{2}\right|^{2}} \tag{1.7}
\end{equation*}
$$

One may see that division by a complex number has been changed into multiplication by a complex number. As a result the denominator becomes a real number and all we now need to define complex division is the rule for multiplication of complex numbers.

Multiplication and division are particularly simple when the polar form of the complex number is used. If $z_{1}=\left|z_{1}\right| \mathrm{e}^{\mathrm{i} \theta_{1}}$ and $z_{2}=\left|z_{2}\right| \mathrm{e}^{\mathrm{i} \theta_{2}}$, then their product is given by

$$
\begin{equation*}
z_{1} * z_{2}=\left|z_{1}\right| *\left|z_{2}\right| \mathrm{e}^{\mathrm{i}\left(\theta_{1}+\theta_{2}\right)} \tag{1.8}
\end{equation*}
$$

To determine $\frac{z_{1}}{z_{2}}$ note that

$$
\begin{align*}
z & =|z|(\cos \theta+\mathrm{i} \sin \theta)=|z| \mathrm{e}^{\mathrm{i} \theta} \\
z^{*} & =|z|(\cos \theta-\mathrm{i} \sin \theta)=|z| \mathrm{e}^{-\mathrm{i} \theta} \tag{1.9}\\
\frac{1}{z} & =\frac{z^{*}}{z z^{*}}=\frac{\mathrm{e}^{-\mathrm{i} \theta}}{|z|}
\end{align*}
$$

Thus

$$
\begin{align*}
\frac{z_{1}}{z_{2}}= & \frac{\left|z_{1}\right| \mathrm{e}^{\mathrm{i} \theta_{1}} * \mathrm{e}^{-\mathrm{i} \theta_{2}}}{\left|z_{2}\right|} \tag{1.10}\\
& =\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \mathrm{e}^{\mathrm{i}\left(\theta_{1}-\theta_{2}\right)}
\end{align*}
$$

1.4.1 Graphical representation of multiplication \mathcal{E} division

$$
z_{1} z_{2}=\left|z_{1}\right|\left|z_{2}\right| \mathrm{e}^{\mathrm{i}\left(\theta_{1}+\theta_{2}\right)}
$$

$$
\frac{z_{1}}{z_{2}}=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \mathrm{e}^{\mathrm{i}\left(\theta_{1}-\theta_{2}\right)}
$$

Example 1.2

Find the modulus $\left|z_{1} / z_{2}\right|$ when $\left\{\begin{array}{l}z_{1}=1+2 \mathrm{i} \\ z_{2}=1-3 \mathrm{i}\end{array}\right.$
Clumsy method:

$$
\begin{aligned}
\left|\frac{z_{1}}{z_{2}}\right| & =\left|\frac{1+2 \mathrm{i}}{1-3 \mathrm{i}}\right|=\frac{\left|z_{1} z_{2}^{*}\right|}{\left|z_{2}\right|^{2}} \\
& =\frac{|(1+2 \mathrm{i})(1+3 \mathrm{i})|}{1+9}=\frac{|(1-6)+\mathrm{i}(2+3)|}{10} \\
& =\frac{\sqrt{25+25}}{10}=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Elegant method:

$$
\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}=\frac{\sqrt{1+4}}{\sqrt{1+9}}=\frac{1}{\sqrt{2}}
$$

2 Complex Numbers II

2.1 Simple functions of z

The definition of the exponential, cosine and sine functions of a real variable can be done by writing their series expansions :

$$
\begin{align*}
\mathrm{e}^{x} & =1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots \\
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\cdots \tag{2.1}\\
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+\cdots
\end{align*}
$$

These expansions are defined for $x<1$ where the infinite series converges. For small x a few of terms may be a sufficient to provide a good approximation. Thus for very small $x, \sin x \approx x$.

2.1.1 The complex exponential function

In a similar manner we may define functions of the complex variable z. The complex exponential is defined by

$$
\begin{equation*}
\mathrm{e}^{z}=1+z+\frac{z^{2}}{2!}+\cdots \tag{2.2}
\end{equation*}
$$

A special case is if z is purely imaginary $z=\mathrm{i} \theta$. Using the fact that $\mathrm{i}^{2 n}=1$ or -1 for n even or odd and $\mathrm{i}^{2 n+1}=i$ or $-i$ for n even or odd we may write

$$
\begin{align*}
\mathrm{e}^{\mathrm{i} \theta} & =\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}+\cdots\right)+\mathrm{i}\left(\theta-\frac{\theta^{3}}{3!}+\cdots\right) \tag{2.3}\\
& =\cos \theta+\mathrm{i} \sin \theta \quad \text { (de Moivre's theorem) }
\end{align*}
$$

This is the relation that we used in writing a complex number in polar form, c.f. eq (1.3). Thus

$$
\begin{align*}
z & =|z|(\cos \theta+\mathrm{i} \sin \theta)=|z| \mathrm{e}^{\mathrm{i} \theta} \\
z^{*} & =|z|(\cos \theta-\mathrm{i} \sin \theta)=|z| \mathrm{e}^{-\mathrm{i} \theta} \tag{2.4}\\
\frac{1}{z} & =\frac{z^{*}}{z z^{*}}=\frac{\mathrm{e}^{-\mathrm{i} \theta}}{|z|}
\end{align*}
$$

We may find a useful relation between sines and cosines and complex exponentials. Adding and then subtracting the first two of equations (2.4) we find that

$$
\begin{align*}
\cos \theta & =\frac{1}{2}\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right) \\
\sin \theta & =\frac{1}{2 \mathrm{i}}\left(\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta}\right) \tag{2.5}
\end{align*}
$$

2.1.2 The complex sine and cosine functions

In a similar manner we can define $\cos z$ and $\sin z$ by replacing the $\operatorname{argument} x$ in (2.1) by the complex variable z. The analogue of de Moivre's theorem is

$$
\begin{align*}
\mathrm{e}^{\mathrm{i} z} & =\left(1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}+\cdots\right)+\mathrm{i}\left(z-\frac{z^{3}}{3!}+\cdots\right) \tag{2.6}\\
& =\cos z+\mathrm{i} \sin z
\end{align*}
$$

Similarly one has

$$
\begin{align*}
\cos z & =\frac{1}{2}\left(\mathrm{e}^{\mathrm{i} z}+\mathrm{e}^{-\mathrm{i} z}\right) \tag{2.7}\\
\sin z & =\frac{1}{2 \mathrm{i}}\left(\mathrm{e}^{\mathrm{i} z}-\mathrm{e}^{-\mathrm{i} z}\right)
\end{align*}
$$

From this we learn that the cosine and the sine of an imaginary angle are

$$
\begin{align*}
\cos (\mathrm{i} b) & =\frac{1}{2}\left(\mathrm{e}^{-b}+\mathrm{e}^{b}\right)=\cosh b \\
\sin (\mathrm{i} b) & =\frac{1}{2 \mathrm{i}}\left(\mathrm{e}^{-b}-\mathrm{e}^{b}\right)=\mathrm{i} \sinh b, \tag{2.8}
\end{align*}
$$

where we have used the definitions of the hyperbolic functions

$$
\begin{align*}
\cosh b & \equiv \frac{1}{2}\left(\mathrm{e}^{b}+\mathrm{e}^{-b}\right) \\
\sinh b & \equiv \frac{1}{2}\left(\mathrm{e}^{b}-\mathrm{e}^{-b}\right) \tag{2.9}
\end{align*}
$$

Note:

Hyperbolic functions get their name from the identity $\cosh ^{2} \theta-\sinh ^{2} \theta=1$, which is readily proved from (2.9) and is reminiscent of the equation of a hyperbola, $x^{2}-y^{2}=1$.

2.1.3 The complex logarithm

The logarithmic function is the inverse of the exponential function meaning that if one acts on z by the logarithmic function and then by the exponential function one gets just $\mathrm{z}, \mathrm{e}^{\ln z}=z$. We may use this property to define the logarithm of a complex variable :

$$
\begin{gather*}
\mathrm{e}^{\ln z}=z=|z| e^{\mathrm{i} \theta}=\mathrm{e}^{\ln |z|} \mathrm{e}^{\mathrm{i} \theta}=\mathrm{e}^{\ln |z|+\mathrm{i} \theta} \\
\Rightarrow \ln z=\ln |z|+\mathrm{i} \arg (z) \tag{2.10}\\
(a) \tag{b}
\end{gather*}
$$

Part (a) is just the normal logarithm of a real variable and gives the real part of the logarithmic fiunction while part (b) gives its imaginary part. Note that the infinite ambiguity in the phase of z is no longer present in $\ln z$ because the addition of an integer multiple of 2π to the argument of z changes the imaginary part of the logarithm by the same amount. Thus it is essential, when defining the logarithm, to know precisely the argument of z.

2.2 de Moivre's theorem and trigonometric identities

Using the rules for multiplication of complex numbers gives the general form of de Moivre's theorem :

$$
\begin{equation*}
z^{n}=\left(r \mathrm{e}^{\mathrm{i} \theta}\right)^{n}=r^{n} \mathrm{e}^{i n \theta}=r^{n}(\cos n \theta+i \sin n \theta) \tag{2.11}
\end{equation*}
$$

for any integer n.

2.2.1 Trigonometric identities

For $r=1$ eq (2.11) becomes

$$
\begin{equation*}
\left(\mathrm{e}^{\mathrm{i} \theta}\right)^{n}=(\cos \theta+\mathrm{i} \sin \theta)^{n}=\cos n \theta+\mathrm{i} \sin n \theta \tag{2.12}
\end{equation*}
$$

This form generates simple identities for $\cos n \theta$ and $\sin n \theta$. For example, for $n=2$ we have, equating the real and imaginary parts of the equation

$$
\begin{align*}
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta \\
\sin 2 \theta & =2 \cos \theta \sin \theta \tag{2.13}
\end{align*}
$$

The complex exponential is very useful in establishing trigonometric identities. We have

$$
\begin{aligned}
\cos (a+b)+\mathrm{i} \sin (a+b) & =\mathrm{e}^{\mathrm{i}(a+b)}=\mathrm{e}^{\mathrm{i} a} \mathrm{e}^{\mathrm{i} b} \\
& =(\cos a+\mathrm{i} \sin a)(\cos b+\mathrm{i} \sin b) \\
& =(\cos a \cos b-\sin a \sin b)+\mathrm{i}(\cos a \sin b+\sin a \cos b)
\end{aligned}
$$

where we have used the property of exponentials that $\mathrm{e}^{\mathrm{i}(a+b)}=\mathrm{e}^{\mathrm{i} a} \mathrm{e}^{\mathrm{i} b}$. This is an example of a complex equation relating a complex number on the left hand size (LHS) to a complex number on the right hand side (RHS). To solve it we must equate the real parts of the LHS and the RHS and separately the imaginary parts of the LHS and RHS. Thus a complex equation is equivalent to two real equations. Comparing real and imaginary parts on the two sides of (2.14), we deduce that

$$
\begin{align*}
\cos (a+b) & =\cos a \cos b-\sin a \sin b \tag{2.14}\\
\sin (a+b) & =\sin a \cos b+\cos a \sin b
\end{align*}
$$

2.2.2 Identities for complex sines and cosines

We may use the result of (2.7) to evaluate the cosine of a complex number:

$$
\begin{align*}
\cos z & =\cos (a+\mathrm{i} b) \\
& =\frac{1}{2}\left(\mathrm{e}^{(\mathrm{i} a-b)}+\mathrm{e}^{(-\mathrm{i} a+b)}\right) \tag{2.15}\\
& =\frac{1}{2}\left(\mathrm{e}^{-b}(\cos a+\mathrm{i} \sin a)+\mathrm{e}^{b}(\cos a-\mathrm{i} \sin a)\right) \\
& =\cos a \cosh b-\mathrm{i} \sin a \sinh b
\end{align*}
$$

Analogously

$$
\begin{equation*}
\sin z=\sin a \cosh b+\mathrm{i} \cos a \sinh b \tag{2.16}
\end{equation*}
$$

2.3 Uses of de Moivre's theorem

It is often much easier and more compact to work with the complex exponential rather than with sines and cosines. Here I give just three examples; you will encounter more in the discussion of differential equations and in the problem sets.

Example 2.1
Find $(1+i)^{4}$. Taking powers is much simpler in polar form so we write $(1+i)=$ $\sqrt{(} 2) \mathrm{e}^{\mathrm{i} \pi / 4}$. Hence $(1+\mathrm{i})^{4}=\left(\sqrt{(2)} \mathrm{e}^{\mathrm{i} \pi / 4}\right)^{4}=16 \mathrm{e}^{2 \pi \mathrm{i}}=16$.

Example 2.2

Solving differential equations is often much simpler using complex exponentials as we shall discuss in detail in later lectures. As an introductory example I consider here the solution of simple harmonic motion, $\frac{\mathrm{d}^{2} y}{\mathrm{~d} \theta^{2}}+y=0$. The general solution is well known $y=A \cos \theta+B \sin \theta$ where A and B are real constants. To solve it using the complex exponential we first write $y=\Re \mathrm{e} z$ so that the equation becomes $\frac{\mathrm{d}^{2} \Re \mathrm{e} z}{\mathrm{~d} \theta^{2}}+\Re \mathrm{e} z=\Re \mathrm{e}\left(\frac{\mathrm{d}^{2} z}{\mathrm{~d} \theta^{2}}+z\right)=0$ The solution to the equation $\frac{d^{2} z}{\mathrm{~d} \theta^{2}}+z=0$ is simply $z=C \mathrm{e}^{i \theta}$ where C is a (complex) constant. (You may check that this is the case simply by substituting the answer in the original equation). Writing $C=A-\mathrm{i} B$ one finds, using de Moivre,

$$
\begin{align*}
y & =\Re \mathrm{e} z=\Re \mathrm{e}((A-\mathrm{i} B)(\cos \theta+\mathrm{i} \sin \theta)) \\
& =A \cos \theta+B \sin \theta \tag{2.17}
\end{align*}
$$

Thus we have derived the general solution in one step - there is no need to look for the sine and cosine solutions separately. Although the saving in effort through using complex exponentials is modest in this simple example, it becomes significant in the solution of more general differential equations.

Example 2.3

Series involving sines and cosines may often be summed using de Moivre. As an example we will prove that for $0<r<1$

$$
\sum_{n=0}^{\infty} r^{n} \sin (2 n+1) \theta=\frac{(1+r) \sin \theta}{1-2 r \cos 2 \theta+r^{2}}
$$

Proof:

$$
\begin{aligned}
\sum_{n=0}^{\infty} r^{n} \sin (2 n+1) \theta & =\sum_{n} r^{n} \Im \mathrm{~m}\left(\mathrm{e}^{\mathrm{i}(2 n+1) \theta}\right)=\Im \mathrm{m}\left(\mathrm{e}^{\mathrm{i} \theta} \sum_{n}\left(r \mathrm{e}^{2 \mathrm{i} \theta}\right)^{n}\right) \\
& =\Im \mathrm{m}\left(\mathrm{e}^{\mathrm{i} \theta} \frac{1}{1-r \mathrm{e}^{2 \mathrm{i} \theta}}\right) \\
& =\Im \mathrm{m}\left(\frac{\mathrm{e}^{\mathrm{i} \theta}\left(1-r \mathrm{e}^{-2 \mathrm{i} \theta}\right)}{\left(1-r \mathrm{e}^{2 \mathrm{i} \theta}\right)\left(1-r \mathrm{e}^{-2 \mathrm{i} \theta}\right)}\right) \\
& =\frac{\sin \theta+r \sin \theta}{1-2 r \cos 2 \theta+r^{2}}
\end{aligned}
$$

2.4 Curves in the complex plane

The locus of points satisfying some constraint on a complex parameter traces out a curve in the complex plane. For example the constraint $|z|=1$ requires that the length of the vector from the origin to the point z is constant and equal to 1 . This clearly corresponds to the set of points lying on a circle of unit radius.

Instead of determining the geometric structure of the constraint one may instead solve the constraint equation algebraically and look for the equation of the curve. This has the advantage that the method is in principle straightforward although the details may be algebraically involved whereas the geometical construction may not be obvious. In Cartesian coordinates the algebraic constraint corresponding to $|z|=1$ is $|z|^{2}=a^{2}+b^{2}=1$ which is the equation of a circle as expected. In polar coordinates the calculation is even simpler $|z|=r=1$.

As a second example consider the constraint $\left|z-z_{0}\right|=1$. This is the equation of a unit circle centre z_{0} as may be immediately seen by changing the coordinate system to $z^{\prime}=\left(z-z_{0}\right)$.

Alternatively one may solve the constraint algebraically to find $\left|z-z_{0}\right|^{2}=(a-$ $\left.a_{0}\right)^{2}+\left(b-b_{0}\right)^{2}=1$ which is the equation of the unit circle centred at the point $\left(a_{0}, b_{0}\right)$. The solution in polar coordinates is not so straightforward in this case, showing that it is important to try the alternate forms when looking for the algebraic solution. To illustrate the techniques for finding curves in the complex plane in more complicated cases I present some further examples:

Example 2.4

What is the locus in the Argand diagram that is defined by $\left|\frac{z-\mathrm{i}}{z+\mathrm{i}}\right|=1$?
Equivalently we have $|z-\mathrm{i}|=|z+\mathrm{i}|$, so the distance to z from $(0,1)$ is the same as the distance from $(0,-1)$. Hence the solution is the "real axis".

Alternatively we may solve the equation

$$
a^{2}+(b-1)^{2}=a^{2}+(b+1)^{2}
$$

which gives $b=0, a$ arbitrary, corresponding to the real axis.

Example 2.5

What is the locus in the Argand diagram that is defined by $\arg \left(\frac{z}{z+1}\right)=\frac{\pi}{4}$?
Equivalently $\arg (z)-\arg (z+1)=\frac{\pi}{4}$

Solution: "portion of circle through $(0,0)$ and $(-1,0)$ "
The x-coordinate of the centre is $-\frac{1}{2}$ by symmetry. The angle subtended by a chord at the centre is twice that subtended at the circumference, so here it is $\pi / 2$. With this fact it easily follows that the y-coordinate of the centre is $\frac{1}{2}$.

Try solving this example algebraically.

The lower portion of circle is $\arg \left(\frac{z}{z+1}\right)=-\frac{3 \pi}{4}$

2.5 Roots of polynomials

Complex numbers enable us to find roots for any polynomial

$$
\begin{equation*}
P(z) \equiv a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0} . \tag{2.18}
\end{equation*}
$$

That is, there is at least one, and perhaps as many as n complex numbers z_{i} such that $P\left(z_{i}\right)=0$. Many physical problems involve such roots.

In the case $n=2$ you already know a general formula for the roots. There is a similar formula for the case $n=3$ and historically this is important because it lead to the invention of complex numbers. However, it can be shown that such general formulae do not exist for equations of higher order. We can, however, find the roots of specially simple polynomials.

2.5.1 Special polyniomials

We start with something really simple. Consider the nth roots of unity (n is an integer):

$$
x^{n}=1 \quad \Rightarrow \quad x=1^{1 / n}
$$

Now in taking roots it is crucial to allow for the ambiguity in the phase of a (complex) number

$$
\begin{align*}
1=\mathrm{e}^{2 m \pi \mathrm{i}} \Rightarrow 1^{1 / n} & =\mathrm{e}^{2 m \pi \mathrm{i} / n} \\
& =\cos \left(\frac{2 m \pi}{n}\right)+\mathrm{i} \sin \left(\frac{2 m \pi}{n}\right) \tag{2.19}
\end{align*}
$$

In this equation m is an integer which can take positive or negative values or zero $(m \in Z)$. However it is not necessary to keep all these values when taking the nth root because, as may be seen from eq (2.19), the roots corresponding to m and $m+n$ are the same as the arguments of the sine and cosine differ by 2π. For this reason it is sufficient to give just the n distinct roots and it is convenient to do this through a choice of any n consecutive values of m.
e.g.

$$
1^{1 / 5}=\cos \left(\frac{2 m \pi}{5}\right)+\mathrm{i} \sin \left(\frac{2 m \pi}{5}\right) \quad(m=0,1,2,3,4) .
$$

The roots may be drawn in the Argand plane and correspond to five equally spaced points in the plane :

In what follows I will illustrate the techniques of taking roots in more complicated cases by a series of examples. In this we shall often need the coefficients of $x^{r} y^{n-r}$ in
$(x+y)^{n}$. These are conveniently obtained from Pascal's triangle:

$(x+y)^{0}$							1				
$(x+y)^{1}$					1		1				
$(x+y)^{2}$											
$(x+y)^{3}$				1		2		1			
$(x+y)^{4}$			1		3		3		1		
$(x+y)^{5}$	1	1		4		6		4		1	
(x)		5		10		10		5		1	

Each row is obtained from the one above by adding the numbers to right and left of the position to be filled in.

Example 2.6

Consider the equation $(z+i)^{7}+(z-i)^{7}=0$. This may be readily solved by the techniques just discussed

$$
\begin{array}{r}
\left(\frac{z+\mathrm{i}}{z-\mathrm{i}}\right)^{7}=-1=\mathrm{e}^{(2 m+1) \pi \mathrm{i}} \\
\Rightarrow \quad \frac{z+\mathrm{i}}{z-\mathrm{i}}=\mathrm{e}^{(2 m+1) \pi \mathrm{i} / 7} \Rightarrow z\left(1-\mathrm{e}^{(2 m+1) \pi \mathrm{i} / 7}\right)=-\mathrm{i}\left(1+\mathrm{e}^{(2 m+1) \pi \mathrm{i} / 7}\right) \\
\Rightarrow \quad z=\mathrm{i} \frac{\mathrm{e}^{(2 m+1) \pi \mathrm{i} / 7}+1}{\mathrm{e}^{(2 m+1) \pi \mathrm{i} / 7}-1}=\mathrm{i} \frac{\mathrm{e}^{(2 m+1) \pi \mathrm{i} / 14}+\mathrm{e}^{-(2 m+1) \pi \mathrm{i} / 14}}{\mathrm{e}^{(2 m+1) \pi \mathrm{i} / 14}-\mathrm{e}^{-(2 m+1) \pi \mathrm{i} / 14}}=\mathrm{i} \frac{2 \cos \left(\frac{2 m+1}{14} \pi\right)}{2 \mathrm{i} \sin \left(\frac{2 m+1}{14} \pi\right)} .
\end{array}
$$

The original equation can be written in another form

$$
\begin{aligned}
& \Rightarrow \quad z^{7}-21 z^{5}+35 z^{3}-7 z=0 \\
& \Rightarrow \quad z^{6}-21 z^{4}+35 z^{2}-7=0 \quad \text { or } \quad z=0 \\
& \Rightarrow \quad w^{3}-21 w^{2}+35 w-7=0 \quad\left(w \equiv z^{2}\right)
\end{aligned}
$$

Thus, using our solution for the roots of the original equation, we see the roots of $w^{3}-21 w^{2}+35 w-7=0$ are $w=\cot ^{2}\left(\frac{2 m+1}{14} \pi\right) \quad(m=0,1,2)$.

Example 2.7

Sometimes the underlying equation which can be solved by these techniques is not obvious. For example - find the roots of

$$
z^{3}+7 z^{2}+7 z+1=0
$$

The ninth row of Pascal's triangle is

$$
18285670562881 \text {, }
$$

so

$$
\begin{aligned}
\frac{1}{2}\left[(z+1)^{8}-(z-1)^{8}\right] & =8 z^{7}+56 z^{5}+56 z^{3}+8 z \\
& =8 z\left[w^{3}+7 w^{2}+7 w+1\right] \quad\left(w \equiv z^{2}\right)
\end{aligned}
$$

Now $(z+1)^{8}-(z-1)^{8}=0$ when $\frac{z+1}{z-1}=\mathrm{e}^{2 m \pi i / 8}$, i.e. when

$$
z=\frac{\mathrm{e}^{m \pi \mathrm{i} / 4}+1}{\mathrm{e}^{m \pi \mathrm{i} / 4}-1}=-\mathrm{i} \cot (m \pi / 8) \quad(m=1,2, \ldots, 7)
$$

so the roots of the given equation are $z=-\cot ^{2}(m \pi / 8), m=1,2,3$.

2.5.2 Characterizing a polynomial by its roots

Knowledge of a polynomial's roots enables us to express the polynomial as a product of linear terms

$$
\begin{align*}
a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0} & =a_{n}\left(z-r_{1}\right)\left(z-r_{2}\right) \cdots\left(z-r_{n}\right) \\
& =a_{n}\left(z^{n}-z^{n-1} \sum_{j=1}^{n} r_{j}+\cdots+(-1)^{n} \prod_{j=1}^{n} r_{j}\right) . \tag{2.20}
\end{align*}
$$

Comparing the coefficients of z^{n-1} and z^{0} on the two sides, we deduce that

$$
\begin{equation*}
\frac{a_{n-1}}{a_{n}}=-\sum_{j} r_{j} \quad ; \quad \frac{a_{0}}{a_{n}}=(-1)^{n} \prod_{j} r_{j} \tag{2.21}
\end{equation*}
$$

i.e. The two ratios are related to the sum and the product of the roots respectively.

Example 2.8

Show that $\sum_{m=0}^{2} \cot ^{2}\left(\frac{2 m+1}{14} \pi\right)=21$
Solution: From Example 2.6 we have that these numbers are the roots of $w^{3}-$ $21 w^{2}+35 w-7=0$.

Example 2.9

Note that from eq (2.20) it is clear that a polynomial may be characterized by (i) its roots and (ii) any a_{n}. To illustrate the use of this representation show that

$$
\frac{z^{2 m}-a^{2 m}}{z^{2}-a^{2}}=\left(z^{2}-2 a z \cos \frac{\pi}{m}+a^{2}\right)\left(z^{2}-2 a z \cos \frac{2 \pi}{m}+a^{2}\right) \cdots\left(z^{2}-2 a z \cos \frac{(m-1) \pi}{m}+a^{2}\right) .
$$

Solution: Consider $P(z) \equiv z^{2 m}-a^{2 m}$, a polynomial of order $2 m$ with leading term $a_{2 m}=1$ and roots $z_{r}=a \mathrm{e}^{r \pi i / m}$. Define

$$
Q(z) \equiv\left(z^{2}-a^{2}\right)\left(z^{2}-2 a z \cos \frac{\pi}{m}+a^{2}\right)\left(z^{2}-2 a z \cos \frac{2 \pi}{m}+a^{2}\right) \cdots\left(z^{2}-2 a z \cos \frac{(m-1) \pi}{m}+a^{2}\right)
$$

This polynomial is of order $2 m$ with leading coeff. $a_{2 m}=1$ and with roots that are the numbers

$$
\begin{aligned}
z_{r} & =a \cos \frac{r \pi}{m} \pm \sqrt{a^{2} \cos ^{2} \frac{r \pi}{m}-a^{2}} \\
& =a\left(\cos \frac{r \pi}{m} \pm \mathrm{i} \sqrt{1-\cos ^{2} \frac{r \pi}{m}}\right)=a \mathrm{e}^{ \pm \mathrm{i} r \pi / m} \quad(r=0,1, \ldots, m)
\end{aligned}
$$

Thus P and Q are identical.

3 Differential Equations

A differential equation is an equation in which an expression involving derivatives of an unknown function is set equal to a known function. For example

$$
\begin{equation*}
\frac{\mathrm{d} f}{\mathrm{~d} x}+x f=\sin x \tag{3.1}
\end{equation*}
$$

is a differential equation for $f(x)$. To determine a unique solution of a differential equation we require some initial data; in the case of (3.1), the value of f at some point x. These data are often called initial conditions. Below we'll discuss how many initial conditions one needs.

Differential equations enable us to encapsulate physical laws: the equation governs events everywhere and at all times; the rich variety of experience arises because at different places and times different initial conditions select different solutions. Since differential equations are of such transcending importance for physics, let's talk about them in some generality.

3.1 Differential operators

Every differential equation involves a differential operator.
functions: numbers \rightarrow numbers (e.g. $x \rightarrow \mathrm{e}^{x}$)
operators: functions \rightarrow functions (e.g. $f \rightarrow \alpha f ; f \rightarrow 1 / f ; f \rightarrow f+\alpha ; \ldots$)
A differential operator does this mapping by differentiating the function one or more times (and perhaps adding in a function, or multiplying by one, etc).

$$
\left(\text { e.g. } f \rightarrow \frac{\mathrm{~d} f}{\mathrm{~d} x} ; f \rightarrow \frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}} ; f \rightarrow 2 \frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}}+f \frac{\mathrm{~d} f}{\mathrm{~d} x} ; \ldots\right)
$$

It is useful name the operators. For example we could denote by $L(f)$ the operation $f \rightarrow \frac{\mathrm{~d} f}{\mathrm{~d} x}$.

3.1.1 Order of a differential operator

The order of a differential operator is the order of the highest derivative contained in it. So

$$
\begin{aligned}
& L_{1}(f) \equiv \frac{\mathrm{d} f}{\mathrm{~d} x}+3 f \quad \text { is first order, } \\
& L_{2}(f) \equiv \frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}+3 f \quad \text { is second order, } \\
& L_{3}(f) \equiv \frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}+4 \frac{\mathrm{~d} f}{\mathrm{~d} x} \quad \text { is second order. }
\end{aligned}
$$

3.1.2 Linear operators

L is a linear operator if

$$
\begin{equation*}
L(\alpha f+\beta g)=\alpha L(f)+\beta L(g) \tag{3.2}
\end{equation*}
$$

where α and β are (possibly complex) numbers.

$$
\text { (e.g. } f \rightarrow \frac{\mathrm{~d} f}{\mathrm{~d} x} \text { and } f \rightarrow \alpha f \text { are linear, but not } f \rightarrow \frac{1}{f} \text { and } f \rightarrow f+\alpha \text { are not.) }
$$

3.2 Linearity

An expression of the type $\alpha f+\beta g$ that is a sum of multiples of two or more functions is called a linear combination of the functions.

To a good approximation, many physical systems are described by linear differential equations $L(f)=0$. Classical electrodynamics provides a notable example: the equations (Maxwell's) governing electric and magnetic fields in a vacuum are linear. The related equation governing the generation of a Newtonian gravitational field is also linear. Similarly in quantum mechanics the differential equations governing the evolution of the system, such as the Schrodinger equation, are linear.

Suppose f and g are two solutions of the linear equation $L(y)=0$ for different initial conditions. For example, if L symbolizes Maxwell's equations, f and g might describe the electric fields generated by different distributions of charges. Then since L is linear, $L(f+g)=0$, so $(f+g)$ describes the electric field generated by both charge distributions taken together. This idea, that if the governing equations are linear, then the response to two stimuli taken together is just the sum of the responses to the stimuli taken separately, is known as the principle of superposition. This principle is widely used to find the required solution to linear differential equations: we start by finding some very simple solutions that individually don't satisfy our initial conditions and then we look for linear combinations of them that do.

Linearity is almost always an approximation that breaks down if the stimuli are very large. For example, in consequence of the linearity of Maxwell's equations, the beam from one torch will pass right through the beam of another torch without being affected by it. But the beam from an extremely strong source of light would scatter a torch beam because the vacuum contains 'virtual' electron-positron pairs which respond non-negligibly to the field of a powerful beam, and the excited electro-positron pairs can then scatter the torch beam. In a similar way, light propagating through a crystal (which is full of positive and negative charges) can rather easily modify the electrical properties of a crystal in a way that affects a second light beam - this is the idea behind non-linear optics, now an enormously important area technologically. Gravity too is non-linear for very strong fields.

While non-linearity is the generic case, the regime of weak stimuli in which physics is to a good approximation linear is often a large and practically important one. Moreover, when we do understand non-linear processes quantitatively, this is often done using concepts that arise in the linear regime. For example, any elementary particle, such as an electron or a quark, is a weak-field, linear-response construct of quantum field theory.

3.3 Inhomogeneous terms

We've so far imagined the stimuli to be encoded in the initial conditions. It is sometimes convenient to formulate a physical problem so that at least some of the stimuli are encoded by a function that we set our differential operator equal to. Thus we write

$$
\underset{\text { given sought }}{L \quad(f)} \begin{gather*}
h(x) \\
\text { homogeneous }
\end{gathered} \quad \begin{gathered}
\text { given } \tag{3.3}\\
\text { inhomogeneous }
\end{gather*}
$$

Suppose f_{1} is the general solution of $L f=0$ and f_{0} is any solution of $L f=h$. We call f_{1} the complementary function and f_{0} the particular integral and then the general solution of $L f=h$ is

$$
\begin{array}{ccc}
f_{1} & + & f_{0} . \tag{3.4}\\
\text { Complementary fn } & & \text { Particular integral }
\end{array}
$$

How many initial conditions do we need to specify to pick out a unique solution of $L(f)=0$? It is easy to determine this in a hand-waving way because the solution to a differential equation requires integration. With a single derivative one needs to perform one integration which introduces one integration constant which in turn must be fixed by one initial condition. Thus the number of integration constants needed, or equivalently the number of initial conditions, is just the order of the differential equation. A more rigorous justification of this may be found in Appendix 6.4.1.

3.4 First-order linear equations

3.4.1 Integrating factor

Any first-order linear equation can be written in the form

$$
\begin{equation*}
\frac{\mathrm{d} f}{\mathrm{~d} x}+q(x) f=h(x) \tag{3.5}
\end{equation*}
$$

Since the solution to this equation implies an integration to remove the derivative the general solution will have one arbitrary constant. The solution can be found by seeking a function $I(x)$ such that

$$
\begin{equation*}
I \frac{\mathrm{~d} f}{\mathrm{~d} x}+I q f=\frac{\mathrm{d} I f}{\mathrm{~d} x}=I h \quad \Rightarrow \quad f(x)=\frac{1}{I(x)} \int_{x_{0}}^{x} I\left(x^{\prime}\right) h\left(x^{\prime}\right) \mathrm{d} x^{\prime} \tag{3.6}
\end{equation*}
$$

x_{0} is the required arbitrary constant in the solution, and I is called the integrating factor. We need $I q=\mathrm{d} I / \mathrm{d} x$, so

$$
\begin{equation*}
\ln I=\int q \mathrm{~d} x \quad \Rightarrow \quad I=\mathrm{e}^{\int q \mathrm{~d} x} . \tag{3.7}
\end{equation*}
$$

Example 3.1

Solve

$$
2 x \frac{\mathrm{~d} f}{\mathrm{~d} x}-f=x^{2}
$$

In standard form the equation reads

$$
\begin{gathered}
\frac{\mathrm{d} f}{\mathrm{~d} x}-\frac{f}{2 x}=\frac{1}{2} x \\
\text { so } q=-\frac{1}{2 x} \text { and by }(3.7) I=\mathrm{e}^{-\frac{1}{2} \ln x}=\frac{1}{\sqrt{x}}
\end{gathered}
$$

Plugging this into (3.6) we have $f=\frac{1}{2} \sqrt{x} \int_{x_{0}}^{x} \sqrt{x^{\prime}} \mathrm{d} x^{\prime}=\frac{1}{3}\left(x^{2}-x_{0}^{3 / 2} x^{1 / 2}\right)$.

3.5 First order non-linear equations

Non-linear equations are generally not solvable analytically - in large measure because their solutions display richer structure than analytic functions can describe. There are some interesting special cases, however, in which analytic solutions of nonlinear equations can be derived \dagger

3.5.1 Separable equations

The general form of a separable differential equation is

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{f(x)}{g(y)}
$$

which is readily solved by

$$
\int g(y) \mathrm{d} y=\int f(x) \mathrm{d} x
$$

Example 3.2

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=y^{2} \mathrm{e}^{x}
$$

Separating varibles gives

$$
\int \mathrm{d} y / y^{2}=\int \mathrm{e}^{x} \mathrm{~d} x
$$

with solution

$$
\frac{-1}{y}=\mathrm{e}^{x}+c
$$

or

$$
y=\frac{-1}{\left(\mathrm{e}^{x}+c\right)}
$$

where c is a constant.
\dagger These techniques may also provide simple ways of solving particular linear equations.

3.5.2 Almost separable equations

The general form

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=f(a x+b y)
$$

where f is an arbitrary function and a and b are constants can be solved by the change of variables $z=a x+b y$. Using $\frac{\mathrm{d} z}{\mathrm{~d} x}=a+b \frac{\mathrm{~d} y}{\mathrm{~d} x}$ one finds

$$
\frac{\mathrm{d} z}{\mathrm{~d} x}=a+b f(z)
$$

which is trivially separable and can be solved to give

$$
x=\int \frac{1}{(a+b f(z))} \mathrm{d} z
$$

Example 3.3

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=(-4 x+y)^{2}
$$

In this case the right hand side is a function of $-4 x+y$ only so we change variable to $z=y-4 x$ giving

$$
\frac{\mathrm{d} z}{\mathrm{~d} x}=-4+\frac{\mathrm{d} y}{\mathrm{~d} x}=z^{2}-4
$$

with solution

$$
x=\int \frac{1}{((z-2)(z+2))} \mathrm{d} z
$$

so $x=\frac{1}{4} \ln \left(\frac{(z-2)}{(z+2)}+C\right.$ where C is a constant. Solving for y we find $y=4 x+$ $2 \frac{\left(1+k \mathrm{e}^{4 x}\right)}{\left(1-k \mathrm{e}^{4 x}\right)}$, where k is a constant.

Example 3.4

Another example is given by

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x-y}{x-y+1}
$$

we define

$$
u \equiv x-y+1 \quad \text { and have } \quad \frac{\mathrm{d} u}{\mathrm{~d} x}=1-\frac{u-1}{u} \quad \Rightarrow \quad u \frac{\mathrm{~d} u}{\mathrm{~d} x}=1
$$

which is trivially solvable.

3.5.3 Homogeneous equations

Consider equations of the form

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=f(y / x) \tag{3.8}
\end{equation*}
$$

Such equations are called homogeneous because they are invariant under a rescaling of both variables: that is, if $X=s x, Y=s y$ are rescaled variables, the equation for $Y(X)$ is identical to that for $y(x)$. These equations are readily solved by the substitution

$$
\begin{equation*}
y=v x \quad \Rightarrow \quad y^{\prime}=v^{\prime} x+v \tag{3.9}
\end{equation*}
$$

We find

$$
\begin{equation*}
\int \frac{\mathrm{d} v}{f(v)-v}=\int \frac{\mathrm{d} x}{x}=\ln x+\text { constant. } \tag{3.10}
\end{equation*}
$$

Example 3.5

Solve

$$
x y \frac{\mathrm{~d} y}{\mathrm{~d} x}-y^{2}=(x+y)^{2} \mathrm{e}^{-y / x}
$$

Solution: Dividing through by $x y$ and setting $y=v x$ have

$$
\left(v^{\prime} x+v\right)-v=\frac{(1+v)^{2}}{v} \mathrm{e}^{-v} \Rightarrow \ln x=\int \frac{\mathrm{e}^{v} v \mathrm{~d} v}{(1+v)^{2}}
$$

The substitution $u \equiv 1+v$ transforms integral to

$$
\mathrm{e}^{-1} \int\left(\frac{1}{u}-\frac{1}{u^{2}}\right) \mathrm{e}^{u} \mathrm{~d} u=\mathrm{e}^{-1}\left[\frac{\mathrm{e}^{u}}{u}\right]
$$

3.5.4 The Bernoulli equation

Bernoulli's equation has the form

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}+P(x) y=Q(x) y^{n} \tag{3.11}
\end{equation*}
$$

This is nonlinear but can readily be reduced to a linear equation by the change of variable

$$
\begin{equation*}
z=y^{1-n} \tag{3.12}
\end{equation*}
$$

Then

$$
\frac{\mathrm{d} z}{\mathrm{~d} x}=(1-n) y^{-n} \frac{\mathrm{~d} y}{\mathrm{~d} x}
$$

Hence

$$
\frac{\mathrm{d} z}{\mathrm{~d} x}+(1-n) P(x) z=(1-n) Q(x)
$$

Having converted the equation to a linear equation it can be solved by the techniques we have developed.

Example 3.6

Solve the differential equation

$$
y^{\prime}+y=y^{2 / 3}
$$

Changing varible to $z=y^{1 / 3}$ leads to the equation $z^{\prime}+z / 3=1 / 3$. The integrating factor is $\mathrm{e}^{x / 3}$ and so the solution is $z \mathrm{e}^{x / 3}=\int \mathrm{e}^{x / 3} d x / 3$. This implies $z=y^{1 / 3}=$ $1 / 3+c \mathrm{e}^{-x / 3}$ where c is a constant.

3.6 Exact equations

Suppose x, y are related by $\phi(x, y)=0$. Then $0=\mathrm{d} \phi=\phi_{x} \mathrm{~d} x+\phi_{y} \mathrm{~d} y \quad\left(\phi_{x} \equiv \partial \phi / \partial x\right.$ etc). Hence

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{\phi_{x}}{\phi_{y}} \tag{3.13}
\end{equation*}
$$

Conversely, given $y^{\prime}=f(x, y)$ we can ask if there exists a function $\phi(x, y)$ such that $f=\phi_{x} / \phi_{y}$.

Example 3.7

Solve

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(3 x^{2}+2 x y+y^{2}\right) \tan x-(6 x+2 y)}{(2 x+2 y)} .
$$

Solution: Notice that

$$
\text { top } \times \cos x=-\frac{\partial}{\partial x}\left[\left(3 x^{2}+2 x y+y^{2}\right) \cos x\right]
$$

and

$$
\text { bottom } \times \cos x=\frac{\partial}{\partial y}\left[\left(3 x^{2}+2 x y+y^{2}\right) \cos x\right]
$$

so the solution is $\left(3 x^{2}+2 x y+y^{2}\right) \cos x=$ constant.

3.7 Equations solved by interchange of variables

Consider

$$
y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y=0
$$

As it stands the equation is non-linear, so apparently insoluble. But when we interchange the rôles of the dependent and independent variables, it becomes linear: on multiplication by $(\mathrm{d} x / \mathrm{d} y)$ get

$$
y^{2}+x-2 y \frac{\mathrm{~d} x}{\mathrm{~d} y}=0
$$

3.8 Equations solved by linear transformation

Consider

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=(x-y)^{2}
$$

In terms of $u \equiv y-x$ the equation reads $\mathrm{d} u / \mathrm{d} x=u^{2}-1$, which is trivially soluble.
Similarly, given

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x-y}{x-y+1}
$$

we define

$$
u \equiv x-y+1 \quad \text { and have } \quad 1-\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{u-1}{u} \quad \Rightarrow \quad u \frac{\mathrm{~d} u}{\mathrm{~d} x}=1
$$

which is trivially soluble.

3.9 Second-order linear equations

The general second-order linear equation can be written in the form

$$
\begin{equation*}
\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}+p(x) \frac{\mathrm{d} f}{\mathrm{~d} x}+q(x) f=h(x) \tag{3.14}
\end{equation*}
$$

Is there an integrating factor? Suppose $\exists I(x)$ s.t. $\frac{\mathrm{d}^{2} I f}{\mathrm{~d} x^{2}}=I h$. Then

$$
\begin{equation*}
2 \frac{\mathrm{~d} I}{\mathrm{~d} x}=I p \quad \text { and } \quad \frac{\mathrm{d}^{2} I}{\mathrm{~d} x^{2}}=I q . \tag{3.15}
\end{equation*}
$$

These equations are unfortunately incompatible in most cases. Thus we cannot count on there being an integrating factor, although we can use the integrating factor technique to find the general solution if a particular solution is known - see Appendix 6.4.2.

In this course we will restrict our attention to a class of second order differential equations for which the general solution is known. This is the class in which the coefficients $p(x)$ and $q(x)$ are constants. Such equations arise in many physical situations and so their solution is of great practical importance.

3.9.1 Equations with constant coefficients

Suppose the coefficients of the unknown function f and its derivatives are mere constants:

$$
\begin{equation*}
L f=a_{2} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}}+a_{1} \frac{\mathrm{~d} f}{\mathrm{~d} x}+a_{0} f=h(x) \tag{3.16}
\end{equation*}
$$

The solution to this equation proceeds as discussed in Section 3.3 through a combination of the complementary function and the particular integral. We start by discussing the method to find the complementary function.

The complementary function

We look for a complementary function $y(x)$ that satisfies $L y=0$. We try $y=\mathrm{e}^{\alpha x}$. Substituting this into $a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$ we find that the equation is satisfied $\forall x$ provided

$$
\begin{equation*}
a_{2} \alpha^{2}+a_{1} \alpha+a_{0}=0 \tag{3.17}
\end{equation*}
$$

This condition for the exponent α is called the auxiliary equation. It has two roots

$$
\begin{equation*}
\alpha_{ \pm} \equiv \frac{-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{2} a_{0}}}{2 a_{2}} \tag{3.18}
\end{equation*}
$$

so the CF is

$$
\begin{equation*}
y=A_{+} \mathrm{e}^{\alpha_{+} x}+A_{-} \mathrm{e}^{\alpha_{-} x} . \tag{3.19}
\end{equation*}
$$

Example 3.8

Solve

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y=0
$$

The auxiliary equation is $(\alpha+3)(\alpha+1)=0$, so the CF is $y=A \mathrm{e}^{-3 x}+B \mathrm{e}^{-x}$.

Example 3.9

Solve

$$
L y=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+5 y=0
$$

The auxiliary equation is $\alpha=\frac{1}{2}(2 \pm \sqrt{4-20})=1 \pm 2 \mathrm{i}$, so $y=A \mathrm{e}^{(1+2 \mathrm{i}) x}+B \mathrm{e}^{(1-2 \mathrm{i}) x}$. But this is complex!
However, L is real operator. So $0=\Re \mathrm{e}(L y)=L[\Re \mathrm{e}(y)]$ and $\Re \mathrm{e}(y)$ is also a solution. Ditto $\Im m(y)$. Consequently the solution can be written

$$
y=\mathrm{e}^{x}\left[A^{\prime} \cos (2 x)+B^{\prime} \sin (2 x)\right] .
$$

Example 3.10

Find the solutions to the equation of Exercise 3.9 for which $y(0)=1$ and $(\mathrm{d} y / \mathrm{d} x)_{0}=0$.
Solution: We obtain simultaneous equations for A^{\prime} and B^{\prime} by evaluating the general solution and its derivative at $x=0$:

$$
\begin{aligned}
& 1=A^{\prime} \\
& 0=A^{\prime}+2 B^{\prime} \quad \Rightarrow \quad B^{\prime}=-\frac{1}{2} \quad \Rightarrow \quad y=\mathrm{e}^{x}\left[\cos (2 x)-\frac{1}{2} \sin (2 x)\right] . . . ~
\end{aligned}
$$

3.9.2 Factorization of operators 63 repeated roots

The auxiliary equation (3.17) is just the differential equation $L f=0$ with $\mathrm{d} / \mathrm{d} x$ replaced by α. So just as the roots of a polynomial enables us to express the polynomial as a product of terms linear in the variable, so the knowledge of the roots of the auxiliary equation allows us to express L as a product of two first-order differential operators:

$$
\begin{align*}
\left(\frac{\mathrm{d}}{\mathrm{~d} x}-\alpha_{-}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}-\alpha_{+}\right) f & =\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}-\left(\alpha_{-}+\alpha_{+}\right) \frac{\mathrm{d} f}{\mathrm{~d} x}+\alpha_{-} \alpha_{+} f \tag{3.20}\\
& =\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}+\frac{a_{1}}{a_{2}} \frac{\mathrm{~d} f}{\mathrm{~d} x}+\frac{a_{0}}{a_{2}} \equiv \frac{L f}{a_{2}}
\end{align*}
$$

where have used our formulae (2.21) for the sum and product of the roots of a plynomial. The CF is made up of exponentials because

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} x}-\alpha_{-}\right) \mathrm{e}^{\alpha_{-} x}=0 \quad ; \quad\left(\frac{\mathrm{d}}{\mathrm{~d} x}-\alpha_{+}\right) \mathrm{e}^{\alpha_{+} x}=0
$$

What happens if $a_{1}^{2}-4 a_{2} a_{0}=0$? Then $\alpha_{-}=\alpha_{+}=\alpha$ and

$$
\begin{equation*}
L f=\left(\frac{\mathrm{d}}{\mathrm{~d} x}-\alpha\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}-\alpha\right) f \tag{3.21}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
L\left(x \mathrm{e}^{\alpha x}\right) & =\left(\frac{\mathrm{d}}{\mathrm{~d} x}-\alpha\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}-\alpha\right) x \mathrm{e}^{\alpha x} \\
& =\left(\frac{\mathrm{d}}{\mathrm{~d} x}-\alpha\right) \mathrm{e}^{\alpha x}=0
\end{aligned}
$$

and the CF is $y=A \mathrm{e}^{\alpha x}+B x \mathrm{e}^{\alpha x}$.

Example 3.11

Solve

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=0
$$

The auxiliary equation is $(\alpha-1)^{2}=0$, so $y=A \mathrm{e}^{x}+B x \mathrm{e}^{x}$.
3.9.3 Equations of higher order These results we have just derived generalize easily to linear equations with constant coeffs of any order.

Example 3.12

Solve

$$
\frac{\mathrm{d}^{4} y}{\mathrm{~d} x^{4}}-2 \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}+2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=0
$$

The auxiliary equation is $(\alpha-1)^{2}(\alpha-i)(\alpha+i)=0$, so

$$
y=\mathrm{e}^{x}(A+B x)+C \cos x+D \sin x
$$

The Particular Integral

Recall from Section 3.3 that the general solution of $L f=h$ is $\mathrm{CF}+f_{0}$ where the particular integal f_{0} is any function for which $L f_{0}=h$. There is a general technique for finding PIs. This technique, which centres on Green's functions, lies beyond the syllabus although it is outlined in Chapter 6. For simple inhomogeneous part h we can get by with the use of trial functions. The type of function to be tried depends on the nature of h.
3.9.4 Polynomial $h \quad$ Suppose h is a sum of some powers of x,

$$
\begin{equation*}
h(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots \tag{3.22}
\end{equation*}
$$

Then we try

$$
\begin{align*}
f(x) & =c_{0}+c_{1} x+c_{2} x^{2}+\cdots \\
\Rightarrow \quad f^{\prime} & =c_{1}+2 c_{2} x+\cdots \tag{3.23}\\
f^{\prime \prime} & =2 c_{2}+\cdots
\end{align*}
$$

so

$$
\begin{align*}
h(x)=a_{2} f^{\prime \prime}+a_{1} f^{\prime}+a_{0} f= & \left(a_{0} c_{0}+a_{1} c_{1}+a_{2} 2 c_{2}+\cdots\right) \\
& +\left(a_{0} c_{1}+a_{1} 2 c_{2}+\cdots\right) x \\
& +\left(a_{0} c_{2}+\cdots\right) x^{2} \tag{3.24}\\
& +\cdots
\end{align*}
$$

Comparing powers of x^{0}, x^{1}, \ldots on the two sides of this equation, we obtained coupled linear equations for the c_{r} in terms of the b_{r}. We solve these equations from the bottom up; e.g. for quadratic h

$$
\begin{align*}
& c_{2}=\frac{b_{2}}{a_{0}}, \\
& c_{1}=\frac{b_{1}-2 a_{1} c_{2}}{a_{0}}, \tag{3.25}\\
& c_{0}=\frac{b_{0}-a_{1} c_{1}-2 a_{2} c_{2}}{a_{0}} .
\end{align*}
$$

Notice that the procedure doesn't work if $a_{0}=0$; the orders of the polynomials on left and right then inevitably disagree. This difficulty may be resolved by recognizing that the equation is then a first-order one for $g \equiv f^{\prime}$ and using a trial solution for g that contains a term in x^{2}.

Example 3.13

Find the PI for

$$
f^{\prime \prime}+2 f^{\prime}+f=1+2 x+3 x^{2} .
$$

Try $f=c_{0}+c_{1} x+c_{2} x^{2}$; have

$$
\left.\begin{array}{rr}
x^{2}: & c_{2}=3 \\
x^{1}: & 4 c_{2}+c_{1}=2 \\
x^{0}: & 2 c_{2}+2 c_{1}+c_{0}=1
\end{array}\right\} \Rightarrow \begin{aligned}
& c_{1}=2\left(1-2 c_{2}\right)=-10 \\
& c_{0}=1-2\left(c_{2}+c_{1}\right)=1-2(3-10)=15
\end{aligned}
$$

Check

$$
\begin{aligned}
f & =15-10 x+3 x^{2} \\
2 f^{\prime} & =(-10+6 x) \times 2, \\
f^{\prime \prime} & =6 \\
L(f) & =1+2 x+3 x^{2} .
\end{aligned}
$$

3.9.5 Exponential f When $h=H \mathrm{e}^{\gamma x}$, we try $f=P \mathrm{e}^{\gamma x}$. Substituting this into the general second-order equation with constant coefficients we obtain

$$
\begin{equation*}
P\left(a_{2} \gamma^{2}+a_{1} \gamma+a_{0}\right) \mathrm{e}^{\gamma x}=H \mathrm{e}^{\gamma x} . \tag{3.26}
\end{equation*}
$$

Cancelling the exponentials, solving for P, and substituting the result into $f=P \mathrm{e}^{\gamma x}$, we have finally

$$
\begin{align*}
f & =\frac{H \mathrm{e}^{\gamma x}}{a_{2} \gamma^{2}+a_{1} \gamma+a_{0}} \\
& =\frac{H \mathrm{e}^{\gamma x}}{a_{2}\left(\gamma-\alpha_{-}\right)\left(\gamma-\alpha_{+}\right)} \quad \text { where } \quad \mathrm{CF}=A_{ \pm} \mathrm{e}^{\alpha_{ \pm} x} \tag{3.27}
\end{align*}
$$

Example 3.14

Find the PI for

$$
f^{\prime \prime}+3 f^{\prime}+2 f=\mathrm{e}^{2 x}
$$

So the PI is $f=\frac{\mathrm{e}^{2 x}}{4+6+2}=\frac{1}{12} \mathrm{e}^{2 x}$.
If h contains two or more exponentials, we find separate PIs for each of them, and then add our results to get the overall PI.

Example 3.15

Find the PI for

$$
f^{\prime \prime}+3 f^{\prime}+2 f=\mathrm{e}^{2 x}+2 \mathrm{e}^{x} .
$$

Reasoning as above we conclude that $f_{1} \equiv \frac{1}{12} \mathrm{e}^{2 x}$ satisfies $f_{1}^{\prime \prime}+3 f_{1}^{\prime}+2 f_{1}=\mathrm{e}^{2 x}$.
and $f_{2} \equiv \frac{2 \mathrm{e}^{x}}{1+3+2}=\frac{1}{3} \mathrm{e}^{x}$ satisfies $f_{2}^{\prime \prime}+3 f_{2}^{\prime}+2 f_{2}=\mathrm{e}^{x}$,
so $\frac{1}{12} \mathrm{e}^{2 x}+\frac{1}{3} \mathrm{e}^{x}$ satisfies the given equation.
From equation (3.27) it is clear that we have problem when part of h is in the CF because then one of the denominators of our PI vanishes. The problem we have to address is the solution of

$$
\begin{equation*}
L f=a_{2}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}-\alpha_{1}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}-\alpha_{2}\right) f=H \mathrm{e}^{\alpha_{2} x} . \tag{3.28}
\end{equation*}
$$

$P \mathrm{e}^{\alpha_{2} x}$ is not a useful trial function for the PI because $L \mathrm{e}^{\alpha_{2} x}=0$. Instead we try $P x \mathrm{e}^{\alpha_{2} x}$. We have

$$
\begin{equation*}
\left(\frac{\mathrm{d}}{\mathrm{~d} x}-\alpha_{2}\right) P x \mathrm{e}^{\alpha_{2} x}=P \mathrm{e}^{\alpha_{2} x} \tag{3.29}
\end{equation*}
$$

and

$$
\begin{equation*}
L\left(P x \mathrm{e}^{\alpha_{2} x}\right)=a_{2}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}-\alpha_{1}\right) P \mathrm{e}^{\alpha_{2} x}=a_{2} P\left(\alpha_{2}-\alpha_{1}\right) \mathrm{e}^{\alpha_{2} x} \tag{3.30}
\end{equation*}
$$

Hence, we can solve for P so long as $\alpha_{2} \neq \alpha_{1}: P=\frac{H}{a_{2}\left(\alpha_{2}-\alpha_{1}\right)}$.

Example 3.16

Find the PI for

$$
f^{\prime \prime}+3 f^{\prime}+2 f=\mathrm{e}^{-x}
$$

The CF is $A \mathrm{e}^{-2 x}+B \mathrm{e}^{-x}$, so we try $f=P x \mathrm{e}^{-x}$. We require

$$
\begin{aligned}
\mathrm{e}^{-x} & =\left(\frac{\mathrm{d}}{\mathrm{~d} x}+2\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}+1\right) P x \mathrm{e}^{-x}=\left(\frac{\mathrm{d}}{\mathrm{~d} x}+2\right) P \mathrm{e}^{-x} \\
& =P \mathrm{e}^{-x}
\end{aligned}
$$

Thus $P=1$ and $f=x \mathrm{e}^{-x}$.
What if $\alpha_{1}=\alpha_{2}=\alpha$ and $h=H \mathrm{e}^{\alpha x}$? Then we try $f=P x^{2} \mathrm{e}^{\alpha x}$:

$$
\begin{aligned}
H \mathrm{e}^{\alpha x} & =a_{2}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}-\alpha\right)^{2} P x^{2} \mathrm{e}^{\alpha x}=a_{2}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}-\alpha\right) 2 P x \mathrm{e}^{\alpha x} \\
& =2 a_{2} P \mathrm{e}^{\alpha x} \quad \Rightarrow \quad P=\frac{H}{2 a_{2}}
\end{aligned}
$$

3.9.6 Sinusoidal h

Suppose $h=H \cos x$, so $L f \equiv a_{2} f^{\prime \prime}+a_{1} f^{\prime}+a_{0} f=H \cos x$.
Clumsy method:

$$
f=A \cos x+B \sin x
$$

Elegant method: Find solutions $z(x)$ of the complex equation

$$
\begin{equation*}
L z=H \mathrm{e}^{\mathrm{i} x} \tag{3.31}
\end{equation*}
$$

Since L is real

$$
\begin{equation*}
\Re \mathrm{e}(L z)=L[\Re \mathrm{e}(z)]=\Re \mathrm{e}\left(H \mathrm{e}^{\mathrm{i} x}\right)=H \Re \mathrm{e}\left(\mathrm{e}^{\mathrm{i} x}\right)=H \cos x, \tag{3.32}
\end{equation*}
$$

so the real part of our solution z will answer the given problem.
Set $z=P \mathrm{e}^{\mathrm{i} x}(P$ complex $)$

$$
\begin{equation*}
L z=\left(-a_{2}+\mathrm{i} a_{1}+a_{0}\right) P \mathrm{e}^{\mathrm{i} x} \quad \Rightarrow \quad P=\frac{H}{-a_{2}+\mathrm{i} a_{1}+a_{0}} . \tag{3.33}
\end{equation*}
$$

Finally,

$$
\begin{align*}
f & =H \Re \mathrm{e}\left(\frac{\mathrm{e}^{\mathrm{i} x}}{\left(a_{0}-a_{2}\right)+\mathrm{i} a_{1}}\right) \tag{3.34}\\
& =H \frac{\left(a_{0}-a_{2}\right) \cos x+a_{1} \sin x}{\left(a_{0}-a_{2}\right)^{2}+a_{1}^{2}}
\end{align*}
$$

Note:
We shall see below that in many physical problems explicit extraction of the real part is unhelpful; more physical insight can be obtained from the first than the second of equations (3.34). But don't forget that $\Re \mathrm{e}$ operator! It's especially important to include it when evaluating the arbitrary constants in the CF by imposing initial conditions.

Example 3.17

Find the PI for

$$
f^{\prime \prime}+3 f^{\prime}+2 f=\cos x
$$

We actually solve

$$
z^{\prime \prime}+3 z^{\prime}+2 z=\mathrm{e}^{\mathrm{i} x} .
$$

Hence

$$
z=P \mathrm{e}^{\mathrm{i} x} \quad \text { where } \quad P=\frac{1}{-1+3 \mathrm{i}+2} .
$$

Extracting the real part we have finally

$$
f=\Re \mathrm{e}\left(\frac{\mathrm{e}^{\mathrm{i} x}}{1+3 \mathrm{i}}\right)=\frac{1}{10}(\cos x+3 \sin x)
$$

What do we do if $h=H \sin x$? We solve $L z=H \mathrm{e}^{\mathrm{i} x}$ and take imaginary parts of both sides.

Example 3.18

Find the PI for

$$
f^{\prime \prime}+3 f^{\prime}+2 f=\sin x
$$

Solving $z^{\prime \prime}+3 z^{\prime}+2 z=\mathrm{e}^{\mathrm{i} x}$ with $z=P \mathrm{e}^{\mathrm{i} x}$ we have

$$
P=\frac{1}{1+3 \mathrm{i}} \quad \Rightarrow \quad f=\Im \mathrm{m}\left(\frac{\mathrm{e}^{\mathrm{i} x}}{1+3 \mathrm{i}}\right)=\frac{1}{10}(\sin x-3 \cos x)
$$

Note:

It is often useful to express $A \cos \theta+B \sin \theta$ as $\widetilde{A} \cos (\theta+\phi)$. We do this by noting that $\cos (\theta+\phi)=\cos \phi \cos \theta-\sin \phi \sin \theta$, so

$$
\begin{aligned}
A \cos \theta+B \sin \theta & =\sqrt{A^{2}+B^{2}}\left(\frac{A}{\sqrt{A^{2}+B^{2}}} \cos \theta+\frac{B}{\sqrt{A^{2}+B^{2}}} \sin \theta\right) \\
& =\sqrt{A^{2}+B^{2}} \cos (\theta+\phi),
\end{aligned}
$$

where $\cos \phi=A / \sqrt{A^{2}+B^{2}}$ and $\sin \phi=-B / \sqrt{A^{2}+B^{2}}$.

Example 3.19

Find the PI for

$$
f^{\prime \prime}+3 f^{\prime}+2 f=3 \cos x+4 \sin x .
$$

The right-hand side can be rewritten $5 \cos (x+\phi)=5 \Re \mathrm{e}\left(\mathrm{e}^{\mathrm{i}(x+\phi)}\right)$, where $\phi=$ $\arctan (-4 / 3)$. So our trial solution of the underlying complex equation is $z=$ $P \mathrm{e}^{\mathrm{i}(x+\phi)}$. Plugging this into the equation, we find

$$
P=\frac{5}{-1+3 \mathrm{i}+2}=\frac{5}{1+3 \mathrm{i}},
$$

so the required PI is

$$
f_{0}=5 \Re \mathrm{e}\left(\frac{\mathrm{e}^{\mathrm{i}(x+\phi)}}{1+3 \mathrm{i}}\right)=\frac{1}{2}[\cos (x+\phi)+3 \sin (x+\phi)] .
$$

The last three examples are rather easy because $\mathrm{e}^{\mathrm{i} x}$ does not occur in the CF (which is $A \mathrm{e}^{-x}+B \mathrm{e}^{-2 x}$). What if $\mathrm{e}^{\mathrm{i} x}$ is in the CF? Then we try $z=P x \mathrm{e}^{\mathrm{i} x}$.

Example 3.20

Find the PI for

$$
f^{\prime \prime}+f=\cos x \quad \Rightarrow \quad z^{\prime \prime}+z=\mathrm{e}^{\mathrm{i} x}
$$

From the auxiliary equation we find that the equation can be written

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} x}+\mathrm{i}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}-\mathrm{i}\right) z=\mathrm{e}^{\mathrm{i} x} .
$$

For the PI Px $\mathrm{e}^{\mathrm{i} x}$ we require

$$
\begin{aligned}
\mathrm{e}^{\mathrm{i} x}= & \left(\frac{\mathrm{d}}{\mathrm{~d} x}+\mathrm{i}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x}-\mathrm{i}\right) P x \mathrm{e}^{\mathrm{i} x}=\left(\frac{\mathrm{d}}{\mathrm{~d} x}+\mathrm{i}\right) P \mathrm{e}^{\mathrm{i} x}=2 \mathrm{i} P \mathrm{e}^{\mathrm{i} x} \\
& \Rightarrow \quad P=\frac{1}{2 \mathrm{i}} \quad \Rightarrow \quad f=\Re \mathrm{e}\left(\frac{x \mathrm{e}^{\mathrm{i} x}}{2 \mathrm{i}}\right)=\frac{1}{2} x \sin x
\end{aligned}
$$

3.9.7 Exponentially decaying sinusoidal h Since we are handling sinusoids by expressing them in terms of exponentials, essentially nothing changes if we are confronted by a combination of an exponential and sinusoids:

Example 3.21

Find the PI for

$$
f^{\prime \prime}+f=\mathrm{e}^{-x}(3 \cos x+4 \sin x) .
$$

The right-hand side can be rewritten $5 \mathrm{e}^{-x} \cos (x+\phi)=5 \Re \mathrm{e}\left(\mathrm{e}^{(\mathrm{i}-1) x+\mathrm{i} \phi}\right)$, where $\phi=\arctan (-4 / 3)$. So our trial solution of the underlying complex equation is $z=P \mathrm{e}^{(\mathrm{i}-1) x+\mathrm{i} \phi}$. Plugging this into the equation, we find

$$
P=\frac{5}{(\mathrm{i}-1)^{2}+1}=\frac{5}{1-2 \mathrm{i}}
$$

Finally the required PI is

$$
f_{0}=5 \Re \mathrm{e}\left(\frac{\mathrm{e}^{(\mathrm{i}-1) x+\mathrm{i} \phi}}{1-2 \mathrm{i}}\right)=\mathrm{e}^{-x}[\cos (x+\phi)-2 \sin (x+\phi)] .
$$

3.10 Application to Oscillators

Second-order differential equations with constant coefficients arise from all sorts of physical systems in which something undergoes small oscillations about a point of equilibrium. It is hard to exaggerate the importance for physics of such systems. Obvious examples include the escapement spring of a watch, the horn of a loudspeaker and an irritating bit of trim that makes a noise at certain speeds in the car. Less familiar examples include the various fields that the vacuum sports, which include the electromagnetic field and the fields whose excitations we call electrons and quarks.

The equation of motion of a mass that oscillates in response to a periodic driving force $m F \cos \omega t$ is

$$
\begin{equation*}
m \ddot{x}=-\underset{\text { spring }}{m \omega_{0}^{2} x}-\underset{\text { friction }}{m \gamma \dot{x}} \quad+\underset{\text { forcing }}{m F \cos \omega t .} \tag{3.35}
\end{equation*}
$$

Gathering the homogeneous and inhomogeneous terms onto the left- and right-hand sides, respectively, we see that the associated complex equation is

$$
\begin{equation*}
\ddot{z}+\gamma \dot{z}+\omega_{0}^{2} z=F \mathrm{e}^{\mathrm{i} \omega t} \tag{3.36}
\end{equation*}
$$

3.10.1 Transients The auxiliary equation of (3.36) is

$$
\begin{aligned}
\alpha^{2}+\gamma \alpha+\omega_{0}^{2}=0 \Rightarrow \alpha & =-\frac{1}{2} \gamma \pm \mathrm{i} \sqrt{\omega_{0}^{2}-\frac{1}{4} \gamma^{2}} \\
& =-\frac{1}{2} \gamma \pm \mathrm{i} \omega_{\gamma} \quad \text { where } \quad \omega_{\gamma} \equiv \omega_{0} \sqrt{1-\frac{1}{4} \gamma^{2} / \omega_{0}^{2}}
\end{aligned}
$$

Here we concentrate on the case that $\omega_{0}^{2}-\frac{1}{4} \gamma^{2}>0$ which corresponds to the case there are oscillating solutions. Using the solutions for α we may determine the CF

$$
\begin{equation*}
x=\mathrm{e}^{-\gamma t / 2}\left[A \cos \left(\omega_{\gamma} t\right)+B \sin \left(\omega_{\gamma} t\right)\right]=\mathrm{e}^{-\gamma t / 2} \widetilde{A} \cos \left(\omega_{\gamma} t+\psi\right), \tag{3.37}
\end{equation*}
$$

where ψ, the phase angle, is an arbitrary constant. Since $\gamma>0$, we have that the $\mathrm{CF} \rightarrow 0$ as $t \rightarrow \infty$. Consequently, the part of motion that is decsribed by the CF is called the transient response.
3.10.2 Steady-state solutions The PI of equation (3.36) is

$$
\begin{equation*}
x=\Re \mathrm{e}\left(\frac{F \mathrm{e}^{\mathrm{i} \omega t}}{\omega_{0}^{2}-\omega^{2}+\mathrm{i} \omega \gamma}\right) . \tag{3.38}
\end{equation*}
$$

The PI describes the steady-state response that remains after the transient has died away.

In (3.38) the bottom $=\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\omega^{2} \gamma^{2}} \mathrm{e}^{\mathrm{i} \phi}$, where $\phi \equiv \arctan \left(\frac{\omega \gamma}{\omega_{0}^{2}-\omega^{2}}\right)$, so the PI may also be written

$$
\begin{equation*}
x=\frac{F \Re \mathrm{e}\left(\mathrm{e}^{\mathrm{i}(\omega t-\phi)}\right)}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\omega^{2} \gamma^{2}}}=\frac{F \cos (\omega t-\phi)}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\omega^{2} \gamma^{2}}} . \tag{3.39}
\end{equation*}
$$

Amplitude and phase of a driven oscillator. Full lines are for $\gamma=0.1 \omega_{0}$, dashed lines for $\gamma=0.5 \omega_{0}$.

For $\phi>0, x$ achieves the same phase as F at t greater by ϕ / ω, so ϕ is called the phase lag of the response.

The amplitude of the response is

$$
\begin{equation*}
A=\frac{F}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\omega^{2} \gamma^{2}}} \tag{3.40}
\end{equation*}
$$

which peaks when

$$
\begin{equation*}
0=\frac{\mathrm{d} A^{-2}}{\mathrm{~d} \omega} \propto-4\left(\omega_{0}^{2}-\omega^{2}\right) \omega+2 \omega \gamma^{2} \quad \Rightarrow \quad \omega^{2}=\omega_{0}^{2}-\frac{1}{2} \gamma^{2} \tag{3.41}
\end{equation*}
$$

$\omega_{R} \equiv \sqrt{\omega_{0}^{2}-\gamma^{2} / 2}$ is called the resonant frequency. Note that the frictional coefficient γ causes ω_{R} to be smaller than the natural frequency ω_{0} of the undamped oscillator.

The figure shows that the amplitude of the steady-state response becomes very large at $\omega=\omega_{R}$ if γ / ω_{0} is small. The figure also shows that the phase lag of the response increases from small values at $\omega<\omega_{R}$ to π at high frequencies. Many important physical processes, including dispersion of light in glass, depend on this often rapid change in phase with frequency.
3.10.3 Power input Power in is $W=\mathcal{F} \dot{x}$, where $\mathcal{F}=m F \cos \omega t$. Since $\Re \mathrm{e}\left(z_{1}\right) \times$ $\Re \mathrm{e}\left(z_{2}\right) \neq \Re \mathrm{e}\left(z_{1} z_{2}\right)$, we have to extract real bits before multiplying them together

$$
\begin{align*}
W=\mathcal{F} \dot{x} & =\Re \mathrm{e}\left(m F \mathrm{e}^{\mathrm{i} \omega t}\right) \times \frac{\Re \mathrm{e}\left(i \omega F \mathrm{e}^{\mathrm{i}(\omega t-\phi)}\right)}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\omega^{2} \gamma^{2}}} \\
& =\frac{\omega m F^{2}}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\omega^{2} \gamma^{2}}}[-\cos (\omega t) \sin (\omega t-\phi)] \tag{3.42}\\
& =-\frac{\frac{1}{2} \omega m F^{2}}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\omega^{2} \gamma^{2}}}[\sin (2 \omega t-\phi)+\sin (-\phi)] .
\end{align*}
$$

Averaging over an integral number of periods, the mean power is

$$
\begin{equation*}
\bar{W}=\frac{\frac{1}{2} \omega m F^{2} \sin \phi}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\omega^{2} \gamma^{2}}} . \tag{3.43}
\end{equation*}
$$

3.10.4 Energy dissipated Let's check that the mean power input is equal to the rate of dissipation of energy by friction. The dissipation rate is

$$
\begin{equation*}
\bar{D}=m \gamma \overline{\dot{x} \dot{x}}=\frac{m \gamma \omega^{2} F^{2} \frac{1}{2}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\omega^{2} \gamma^{2}} \tag{3.44}
\end{equation*}
$$

It is equal to work done because $\sin \phi=\gamma \omega / \sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\omega^{2} \gamma^{2}}$.
3.10.5 Quality factor Now consider the energy content of the transient motion that the CF describes. By (3.37) its energy is

$$
\begin{align*}
E & =\frac{1}{2}\left(m \dot{x}^{2}+m \omega_{0}^{2} x^{2}\right) \\
& =\frac{1}{2} m A^{2} \mathrm{e}^{-\gamma t}\left[\frac{1}{4} \gamma^{2} \cos ^{2} \eta+\omega_{\gamma} \gamma \cos \eta \sin \eta+\omega_{\gamma}^{2} \sin ^{2} \eta+\omega_{0}^{2} \cos ^{2} \eta\right] \quad\left(\eta \equiv \omega_{\gamma} t+\psi\right) \tag{3.45}
\end{align*}
$$

For small γ / ω_{0} this becomes

$$
\begin{equation*}
E \simeq \frac{1}{2} m\left(\omega_{0} A\right)^{2} \mathrm{e}^{-\gamma t} \tag{3.46}
\end{equation*}
$$

We define the quality factor Q to be

$$
\begin{align*}
Q & \equiv \frac{E(t)}{E\left(t-\pi / \omega_{0}\right)-E\left(t+\pi / \omega_{0}\right)} \simeq \frac{1}{\mathrm{e}^{\pi \gamma / \omega_{0}}-\mathrm{e}^{-\pi \gamma / \omega_{0}}}=\frac{1}{2} \operatorname{csch}\left(\pi \gamma / \omega_{0}\right) \tag{3.47}\\
& \simeq \frac{\omega_{0}}{2 \pi \gamma} \quad\left(\text { for small } \gamma / \omega_{0}\right)
\end{align*}
$$

Q is the inverse of the fraction of the oscillator's energy that is dissipated in one period. It is approximately equal to the number of oscillations conducted before the energy decays by a factor of e.

3.11 Systems of Linear DE's with Constant Coefficients

Many physical systems require more than one variable to quantify their configuration: for example a circuit might have two connected current loops, so one needs to know what current is flowing in each loop at each moment. A set of differential equations - one for each variable - will determine the dynamics of such a system. If these equations are linear and have constant coefficients, the procedure for solving them is a minor extension of the procedure for solving a single linear differential equation with constant coefficients.

The steps are:

1. Arrange the equations so that terms on the left are all proportional to an unknown variable, and already known terms are on the right.
2. Find the general solution of the equations that are obtained by setting the right sides to zero. The result of this operation is the CF. It is usually found by replacing the unknown variables by multiples of $\mathrm{e}^{\alpha t}$ (if t is the independent variable) and solving the resulting alegraic equations.
3. Find a particular integral by putting in a trial solution for each term - polynomial, exponential, etc. - on the right hand side.
This recipe is best illustrated by some examples.

Example 3.22

Solve

$$
\begin{gathered}
\frac{\mathrm{d} x}{\mathrm{~d} t}+\frac{\mathrm{d} y}{\mathrm{~d} t}+y=t \\
-\frac{\mathrm{d} y}{\mathrm{~d} t}+3 x+7 y=\mathrm{e}^{2 t}-1
\end{gathered}
$$

It is helpful to introduce the shorthand

$$
\mathbf{L}\binom{x}{y}=\left(\begin{array}{cc}
\frac{\mathrm{d} x}{\mathrm{~d} t} & +\frac{\mathrm{d} y}{\mathrm{~d} t}+y \\
3 x & -\frac{\mathrm{d} y}{\mathrm{~d} t}+7 y
\end{array}\right)
$$

To find CF
Set $\quad\binom{x}{y}=\binom{X \mathrm{e}^{\alpha t}}{Y \mathrm{e}^{\alpha t}} \quad \alpha, X, Y$ complex nos to be determined
Plug into $\mathbf{L}\binom{x}{y}=0$ and cancel the factor $\mathrm{e}^{\alpha t}$

$$
\begin{align*}
\alpha X+(\alpha+1) Y & =0 \\
3 X+(7-\alpha) Y & =0 \tag{3.48}
\end{align*}
$$

The theory of equations, to be discussed early next term, shows that these equations allow X, Y to be non-zero only if the determinant

$$
\left|\begin{array}{cc}
\alpha & \alpha+1 \\
3 & 7-\alpha
\end{array}\right|=0
$$

which in turn implies that $\alpha(7-\alpha)-3(\alpha+1)=0 \Rightarrow \alpha=3, \alpha=1$. We can arrive at the same conclusion less quickly by using the second equation to eliminate Y from the first equation. So the bottom line is that $\alpha=3,1$ are the only two viable values of α. For each value of α either of equations (3.48) imposes a ratio* X / Y
$\alpha=3 \quad \Rightarrow \quad 3 X+4 Y=0 \quad \Rightarrow \quad Y=-\frac{3}{4} X$,
$\alpha=1 \quad \Rightarrow \quad X+2 Y=0 \quad \Rightarrow \quad Y=-\frac{1}{2} X$.
Hence the CF made up of

$$
\binom{x}{y}=X_{a}\binom{1}{-\frac{3}{4}} \mathrm{e}^{3 t} \quad \text { and } \quad\binom{x}{y}=X_{b}\binom{1}{-\frac{1}{2}} \mathrm{e}^{t} .
$$

The two arbitrary constants in this CF reflect the fact that the original equations were first-order in two variables.
To find PI
(i) Polynomial part

$$
\operatorname{Try} \quad\binom{x}{y}=\binom{X_{0}+X_{1} t}{Y_{0}+Y_{1} t}
$$

Plug into $\mathbf{L}\binom{x}{y}=\binom{t}{-1}$

$$
\begin{array}{cc}
X_{1}+Y_{1}+Y_{1} t+Y_{0}=t & 3\left(X_{0}+X_{1} t\right)-Y_{1}+7\left(Y_{0}+Y_{1} t\right)=-1 \\
\Downarrow & \Downarrow \\
Y_{1}=1 ; X_{1}+Y_{1}+Y_{0}=0 & 3 X_{0}+7 Y_{0}=0 ; 3 X_{1}+7 Y_{1}=0 \\
\Downarrow & \Downarrow \\
X_{1}+Y_{0}=-1 & X_{1}=-\frac{7}{3}
\end{array}
$$

Consequently, $Y_{0}=-1+\frac{7}{3}=\frac{4}{3}$ and $X_{0}=-\frac{7}{3} Y_{0}=-\frac{28}{9}$
Thus

$$
\binom{x}{y}=\binom{-\frac{28}{9}-\frac{7}{3} t}{\frac{4}{3}+t}
$$

(ii) Exponential part

$$
\operatorname{Try} \quad\binom{x}{y}=\binom{X}{Y} \mathrm{e}^{2 t}
$$

[^0]Plug into $\mathbf{L}\binom{x}{y}=\binom{0}{\mathrm{e}^{2 t}}$ and find

$$
\begin{aligned}
2 X+(2+1) Y=0 \quad & \Rightarrow \quad X=-\frac{3}{2} Y \\
3 X+(-2+7) Y=1 \quad & \Rightarrow \quad\left(-\frac{9}{2}+5\right) Y=1
\end{aligned}
$$

Hence $Y=2, X=-3$.
Putting everything together the general solution is

$$
\begin{equation*}
\binom{x}{y}=X_{a}\binom{1}{-\frac{3}{4}} \mathrm{e}^{3 t}+X_{b}\binom{1}{-\frac{1}{2}} \mathrm{e}^{t}+\binom{-3}{2} \mathrm{e}^{2 t}+\binom{-\frac{28}{9}-\frac{7}{3} t}{\frac{4}{3}+t} \tag{3.49}
\end{equation*}
$$

We can use the arbitrary constants in the above solution to obtain a solution in which x and y or \dot{x} and \dot{y} take on any prescribed values at $t=0$:

Example 3.23

For the differential equations of Example 3.22, find the solution in which

$$
\begin{aligned}
& \dot{x}(0)=-\frac{19}{3} \\
& \dot{y}(0)=3
\end{aligned}
$$

Solution: Evaluate the time derivative of the GS at $t=0$ and set the result equal to the given data:

$$
\binom{-\frac{19}{3}}{3}=3 X_{a}\binom{1}{-\frac{3}{4}}+X_{b}\binom{1}{-\frac{1}{2}}+2\binom{-3}{2}+\binom{-\frac{7}{3}}{1}
$$

Hence

$$
\begin{aligned}
3 X_{a}+X_{b} & =2 \\
-\frac{9}{4} X_{a}-\frac{1}{2} X_{b} & =-2
\end{aligned} \Rightarrow \begin{aligned}
X_{a} & =\frac{-2}{-3 / 2}=\frac{4}{3} \\
X_{b} & =2-3 X_{a}=-2
\end{aligned}
$$

Here's another, more complicated example.

Example 3.24

Solve

$$
\begin{array}{cll}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} t}+2 x=2 \sin t+3 \cos t+5 \mathrm{e}^{-t} & \text { given } & \begin{array}{l}
x(0)=2 ; \\
\frac{\mathrm{d} x}{\mathrm{~d} t}+\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-y=3 \cos t-5 \sin t-\mathrm{e}^{-t}
\end{array} \\
\dot{x}(0)=0 ; & \dot{y}(0)=4
\end{array}
$$

To find CF
Set $x=X \mathrm{e}^{\alpha t}, y=Y \mathrm{e}^{\alpha t}$

$$
\begin{array}{cccc}
\Rightarrow & \left(\alpha^{2}+2\right) X & + & \alpha Y \\
& \alpha X & + & \left(\alpha^{2}-1\right) Y \\
\Rightarrow & \alpha^{2}= \pm \sqrt{2} & \Rightarrow & \alpha= \pm \beta, \pm \mathrm{i} \beta
\end{array} \quad\left(\beta \equiv 2^{4}=2\right)
$$

and $Y / X=-\left(\alpha^{2}+2\right) / \alpha$ so the CF is

$$
\begin{aligned}
\binom{x}{y}=X_{a}\binom{\beta}{2+\sqrt{2}} \mathrm{e}^{-\beta t} & +X_{b}\binom{-\beta}{2+\sqrt{2}} \mathrm{e}^{\beta t} \\
& +X_{c}\binom{\mathrm{i} \beta}{2-\sqrt{2}} \mathrm{e}^{-\mathrm{i} \beta t}+X_{d}\binom{-\mathrm{i} \beta}{2-\sqrt{2}} \mathrm{e}^{\mathrm{i} \beta t}
\end{aligned}
$$

Notice that the functions multiplying X_{c} and X_{d} are complex conjugates of one another. So if the solution is to be real X_{d} has to be the complex conjugate of X_{c} and these two complex coefficients contain only two real arbitrary constants between them. There are four arbitrary constants in the CF because we are solving second-order equations in two dependent variables.
To Find PI
Set $(x, y)=(X, Y) \mathrm{e}^{-t} \quad \Rightarrow$

$$
\begin{gathered}
X-Y+2 X=5 \\
-X+Y-Y=-1
\end{gathered} \quad \Rightarrow \quad \begin{gathered}
X=1 \\
Y=-2
\end{gathered} \quad \Rightarrow \quad\binom{x}{y}=\binom{1}{-2} \mathrm{e}^{-t}
$$

Have $2 \sin t+3 \cos t=\Re \mathrm{e}\left(\sqrt{13} \mathrm{e}^{\mathrm{i}(t+\phi)}\right)$, where $\cos \phi=3 / \sqrt{13}, \sin \phi=-2 / \sqrt{13}$.
Similarly $3 \cos t-5 \sin t=\Re \mathrm{e}\left(\sqrt{34} \mathrm{e}^{\mathrm{i}(t+\psi)}\right)$, where $\cos \psi=3 / \sqrt{34}, \sin \psi=5 / \sqrt{34}$ Set $(x, y)=\Re \mathrm{e}\left[(X, Y) \mathrm{e}^{\mathrm{i} t}\right]$ and require

$$
\begin{aligned}
-X+\mathrm{i} Y+2 X=X+\mathrm{i} Y & =\sqrt{13} \mathrm{e}^{\mathrm{i} \phi} \\
\mathrm{i} X-Y-Y=\mathrm{i} X-2 Y & =\sqrt{34} \mathrm{e}^{\mathrm{i} \psi}
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
-\mathrm{i} Y & =\sqrt{13} \mathrm{e}^{\mathrm{i} \phi}+\mathrm{i} \sqrt{34} \mathrm{e}^{\mathrm{i} \psi} \\
\mathrm{i} X & =2 \mathrm{i} \sqrt{13} \mathrm{e}^{\mathrm{i} \phi}-\sqrt{34} \mathrm{e}^{\mathrm{i} \psi}
\end{aligned}
$$

so

$$
\begin{aligned}
x & =\Re \mathrm{e}\left(2 \sqrt{13} e^{\mathrm{i}(t+\phi)}+\mathrm{i} \sqrt{34} \mathrm{e}^{\mathrm{i}(t+\psi)}\right) \\
& =2 \sqrt{13}(\cos \phi \cos t-\sin \phi \sin t)-\sqrt{34}(\sin \psi \cos t+\cos \psi \sin t) \\
& =2[3 \cos t+2 \sin t]-5 \cos t-3 \sin t \\
& =\cos t+\sin t
\end{aligned}
$$

Similarly

$$
\begin{aligned}
y & =\Re \mathrm{e}\left(\sqrt{13} \mathrm{i}^{\mathrm{i}(t+\phi)}-\sqrt{34} \mathrm{e}^{\mathrm{i}(t+\psi)}\right) \\
& =\sqrt{13}(-\sin \phi \cos t-\cos \phi \sin t)-\sqrt{34}(\cos \psi \cos t-\sin \psi \sin t) \\
& =2 \cos t-3 \sin t-3 \cos t+5 \sin t \\
& =-\cos t+2 \sin t .
\end{aligned}
$$

Thus the complete PI is

$$
\binom{x}{y}=\binom{\cos t+\sin t}{-\cos t+2 \sin t}+\binom{1}{-2} \mathrm{e}^{-t} .
$$

For the initial-value problem

$$
\begin{aligned}
& \mathrm{PI}(0)=\binom{1}{-2}+\binom{1}{-1}=\binom{2}{-3} \quad ; \quad \dot{\mathrm{PI}}(0)=\binom{-1}{2}+\binom{1}{2}=\binom{0}{4} \\
& \mathrm{CF}(0)=\binom{2}{-3}-\binom{2}{-3}=\binom{0}{0} \quad ; \quad \dot{\mathrm{CF}}(0)=\binom{0}{4}-\binom{0}{4}=\binom{0}{0}
\end{aligned}
$$

So the PI satisfies the initial data and $X_{a}=X_{b}=X_{c}=X_{d}=0$.
In general the number of arbitrary constants in the general solution should be the sum of the orders of the highest derivative in each variable. There are exceptions to this rule, however, as the following example shows. This example also illustrates another general point: that before solving the given equations, one should always try to simplify them by adding a multiple of one equation or its derivative to the other.

Example 3.25

Solve

$$
\begin{gather*}
\frac{\mathrm{d} x}{\mathrm{~d} t}+\frac{\mathrm{d} y}{\mathrm{~d} t}+y=t \\
\frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}+\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+3 x+7 y=\mathrm{e}^{2 t} \tag{3.50}
\end{gather*}
$$

We differentiate the first equation and substract the result from the seond. Then the system becomes first-order - in fact the system solved in Example 3.22. From (3.49) we see that the general solution contains only two arbitrary constants rather than the four we might have expected from a cursory glance at (3.50). To understand this phenomenon better, rewrite the equations in terms of $z \equiv x+y$ as $\dot{z}+z-x=t$ and $\ddot{z}+7 z-4 x=\mathrm{e}^{2 t}$. The first equation can be used to make x a function $x(z, \dot{z}, t)$. Using this to eliminate x from the second equation we obtain an expression for $\ddot{z}(z, \dot{z}, t)$. From this expression and its derivatives w.r.t. t we can construct a Taylor series for z once we are told $z\left(t_{0}\right)$ and $\dot{z}\left(t_{0}\right)$. Hence the general solution should have just two arbitrary constants.
3.11.1 LCR circuits The dynamics of a linear electrical circuit is governed by a system of linear equations with constant coefficients. These may be solved by the general technique described at the start of Chapter 4 . In many cases they may be more easily solved by judicious addition and subtraction along the lines illustrated in Example 3.25 .

Using Kirchhoff's laws

$$
\begin{align*}
& R I_{1}+\frac{Q}{C}+L \frac{\mathrm{~d} I_{1}}{\mathrm{~d} t}=E_{1} \tag{3.51}\\
& L \frac{\mathrm{~d} I_{2}}{\mathrm{~d} t}+R I_{2}-\frac{Q}{C}=0
\end{align*}
$$

We first differentiate to eliminate Q

$$
\begin{align*}
& \frac{\mathrm{d}^{2} I_{1}}{\mathrm{~d} t^{2}}+\frac{R}{L} \frac{\mathrm{~d} I_{1}}{\mathrm{~d} t}+\frac{1}{L C}\left(I_{1}-I_{2}\right)=0 \\
& \frac{\mathrm{~d}^{2} I_{2}}{\mathrm{~d} t^{2}}+\frac{R}{L} \frac{\mathrm{~d} I_{2}}{\mathrm{~d} t}-\frac{1}{L C}\left(I_{1}-I_{2}\right)=0 \tag{3.52}
\end{align*}
$$

We now add the equations to obtain

$$
\begin{equation*}
\frac{\mathrm{d}^{2} S}{\mathrm{~d} t^{2}}+\frac{R}{L} \frac{\mathrm{~d} S}{\mathrm{~d} t}=0 \quad \text { where } \quad S \equiv I_{1}+I_{2} \tag{3.53}
\end{equation*}
$$

Subtracting the equations we find

$$
\begin{equation*}
\frac{\mathrm{d}^{2} D}{\mathrm{~d} t^{2}}+\frac{R}{L} \frac{\mathrm{~d} D}{\mathrm{~d} t}+\frac{2}{L C} D=0 \quad \text { where } \quad D \equiv I_{1}-I_{2} \tag{3.54}
\end{equation*}
$$

We now have two uncoupled equations, one for S and one for D. We solve each in the standard way (Section 3.10).
3.11.2 Time evolution of the LCR circuits The auxiliary equation for (3.53) is $\alpha^{2}+$ $R \alpha / L=0$, and its roots are

$$
\begin{equation*}
\alpha=0 \Rightarrow S=\mathrm{constant} \quad \text { and } \quad \alpha=-R / L \quad \Rightarrow \quad S \propto \mathrm{e}^{-R t / L} \tag{3.55}
\end{equation*}
$$

Since the right side of (3.53) is zero, no PI is required.
The auxiliary equation for (3.54) is

$$
\begin{equation*}
\alpha^{2}+\frac{R}{L} \alpha+\frac{2}{L C}=0 \quad \Rightarrow \quad \alpha=-\frac{1}{2} \frac{R}{L} \pm \frac{\mathrm{i}}{\sqrt{L C}} \sqrt{2-\frac{1}{4} C R^{2} / L}=-\frac{1}{2} \frac{R}{L} \pm \mathrm{i} \omega_{R} \tag{3.56}
\end{equation*}
$$

Again no PI is required.
Adding the results of (3.55) and (3.56), the general solutions to (3.53) and (3.54) are

$$
I_{1}+I_{2}=S=S_{0}+S_{1} \mathrm{e}^{-R t / L} \quad ; \quad I_{1}-I_{2}=D=D_{0} \mathrm{e}^{-R t / 2 L} \sin \left(\omega_{R} t+\phi\right)
$$

From the original equations (3.52) it is easy to see that the steady-state currents are $I_{1}=I_{2}=\frac{1}{2} S_{0}=\frac{1}{2} E_{1} / R$. Hence, the final general solution is

$$
\begin{align*}
& I_{1}+I_{2}=S(t)=K \mathrm{e}^{-R t / L}+\frac{E_{1}}{R} \tag{3.57}\\
& I_{1}-I_{2}=D(t)=D_{0} \mathrm{e}^{-R t / 2 L} \sin \left(\omega_{R} t+\phi\right)
\end{align*}
$$

Example 3.26

The battery is first connected up at $t=0$. Determine I_{1}, I_{2} for $t>0$.
Solution: We have $I_{1}(0)=I_{2}(0)=0$ and from the diagram we see that $\dot{I}_{1}(0)=$ E_{1} / L and $\dot{I}_{2}=0$. Looking at equations (3.57) we set $K=-E_{1} / R$ to ensure that $I_{1}(0)+I_{2}(0)=0$, and $\phi=0$ to ensure that $I_{1}(0)=I_{2}(0)$. Finally we set $D_{0}=\frac{E_{1}}{L \omega_{R}}$ to ensure that $\dot{D}(0)=\frac{E_{1}}{L}$

3.12 Green Functions*

In this section we describe a powerful technique for generating particular integrals. We illustrate it by considering the general second-order linear equation

$$
\begin{equation*}
L_{x}(y) \equiv a_{2}(x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+a_{1}(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+a_{0}(x) y=h(x) . \tag{3.58}
\end{equation*}
$$

On dividing through by a_{2} one sees that without loss of generality we can set $a_{2}=1$. 3.12.1 The Dirac δ-function Consider series of ever bumpier functions such that $\int_{-\infty}^{\infty} f(x) \mathrm{d} x=1$, e.g.

Define $\delta(x)$ as limit of such functions. ($\delta(x)$ itself isn't a function really.) Then

$$
\delta(x)=0 \quad \text { for } \quad x \neq 0 \quad \text { and } \quad \int_{-\infty}^{\infty} \delta(x) \mathrm{d} x=1
$$

δ 's really important property is that

$$
\int_{a}^{b} f(x) \delta\left(x-x_{0}\right) \mathrm{d} x=f\left(x_{0}\right) \quad \forall\left\{\begin{array}{l}
a<x_{0}<b \\
f(x)
\end{array}\right.
$$

Exercises (1):
(i) Prove that $\delta(a x)=\delta(x) /|a|$. If x has units of length, what dimensions has δ ?
(ii) Prove that $\delta(f(x))=\sum_{x_{k}} \delta\left(x-x_{k}\right) /\left|f^{\prime}\left(x_{k}\right)\right|$, where the x_{k} are all points satisfying $f\left(x_{k}\right)=0$.
3.12.2 Defining the Green's function Now suppose for each fixed x_{0} we had the function $G_{x_{0}}(x)$ such that

$$
\begin{equation*}
L_{x} G_{x_{0}}=\delta\left(x-x_{0}\right) \tag{3.59}
\end{equation*}
$$

Then we could easily obtain the desired PI:

$$
\begin{equation*}
y(x) \equiv \int_{-\infty}^{\infty} G_{x_{0}}(x) h\left(x_{0}\right) \mathrm{d} x_{0} \tag{3.60}
\end{equation*}
$$

y is the PI because

$$
\begin{aligned}
L_{x}(y) & =\int_{-\infty}^{\infty} L_{x} G_{x_{0}}(x) h\left(x_{0}\right) \mathrm{d} x_{0} \\
& =\int \delta\left(x-x_{0}\right) h\left(x_{0}\right) \mathrm{d} x_{0} \\
& =h(x) .
\end{aligned}
$$

Hence, once you have the Green's function $G_{x_{0}}$ you can easily find solutions for various h.
3.12.3 Finding $G_{x_{0}}$ Let $y=v_{1}(x)$ and $y=v_{2}(x)$ be two linearly independent solutions of $L_{x} y=0$ i.e. let the CF of our equation be $y=A v_{1}(x)+B v_{2}(x)$. At $x \neq x_{0}$, $L_{x} G_{x_{0}}=0$, so $G_{x_{0}}=A\left(x_{0}\right) v_{1}(x)+B\left(x_{0}\right) v_{2}(x)$. But in general we will have different expressions for $G_{x_{0}}$ in terms of the v_{i} for $x<x_{0}$ and $x>x_{0}$:

$$
G_{x_{0}}= \begin{cases}A_{-}\left(x_{0}\right) v_{1}(x)+B_{-}\left(x_{0}\right) v_{2}(x) & x<x_{0} \tag{3.61}\\ A_{+}\left(x_{0}\right) v_{1}(x)+B_{+}\left(x_{0}\right) v_{2}(x) & x>x_{0}\end{cases}
$$

We need to choose the four functions $A_{ \pm}\left(x_{0}\right)$ and $B_{ \pm}\left(x_{0}\right)$. We do this by:
(i) obliging $G_{x_{0}}$ to satisfy boundary conditions at $x=x_{\min }<x_{0}$ and $x=x_{\max }>x_{0}$ (e.g. $\lim _{x \rightarrow \pm \infty} G_{x_{0}}=0$);
(ii) ensuring $L_{x} G_{x_{0}}=\delta\left(x-x_{0}\right)$.

We deal with (i) by defining $u_{ \pm} \equiv P_{ \pm} v_{1}+Q_{ \pm} v_{2}$ with $P_{ \pm}, Q_{ \pm}$chosen s.t. u_{-}satisfies given boundary condition at $x=x_{\min }$ and u_{+}satisfies condition at $x_{\max }$. Then

$$
G_{x_{0}}(x)= \begin{cases}C_{-}\left(x_{0}\right) u_{-}(x) & x<x_{0} \tag{3.62}\\ C_{+}\left(x_{0}\right) u_{+}(x) & x>x_{0}\end{cases}
$$

We get $C_{ \pm}$by integrating the differential equation from $x_{0}-\epsilon$ to $x_{0}+\epsilon$:

$$
\begin{align*}
1 & =\int_{x_{0}-\epsilon}^{x_{0}+\epsilon} \delta\left(x-x_{0}\right) \mathrm{d} x=\int_{x_{0}-\epsilon}^{x_{0}+\epsilon} L_{x} G_{x_{0}} \mathrm{~d} x \\
& =\int_{x_{0}-\epsilon}^{x_{0}+\epsilon}\left(\frac{\mathrm{d}^{2} G_{x_{0}}}{\mathrm{~d} x^{2}}+a_{1}(x) \frac{\mathrm{d} G_{x_{0}}}{\mathrm{~d} x}+a_{0}(x) G_{x_{0}}(x)\right) \mathrm{d} x \tag{3.63}\\
& =\left[\frac{\mathrm{d} G_{x_{0}}}{\mathrm{~d} x}+a_{1}\left(x_{0}\right) G_{x_{0}}(x)\right]_{x_{0}-\epsilon}^{x_{0}+\epsilon}+\int_{x_{0}-\epsilon}^{x_{0}+\epsilon}\left(a_{0}-\frac{\mathrm{d} a_{1}}{\mathrm{~d} x}\right) G_{x_{0}}(x) \mathrm{d} x
\end{align*}
$$

We assume that $G_{x_{0}}(x)$ is finite and continuous at x_{0}, so the second term in [...] vanishes and the remaining integral vanishes as $\epsilon \rightarrow 0$. Then we have two equations for $C_{ \pm}$:

$$
\begin{align*}
& 1=\left.C_{+}\left(x_{0}\right) \frac{\mathrm{d} u_{+}}{\mathrm{d} x}\right|_{x_{0}}-\left.C_{-}\left(x_{0}\right) \frac{\mathrm{d} u_{-}}{\mathrm{d} x}\right|_{x_{0}} \tag{3.64}\\
& 0=C_{+}\left(x_{0}\right) u_{+}\left(x_{0}\right)-C_{-}\left(x_{0}\right) u_{-}\left(x_{0}\right)
\end{align*}
$$

Solving for $C_{ \pm}$we obtain

$$
\begin{equation*}
C_{ \pm}\left(x_{0}\right)=\left.\frac{u_{\mp}}{\Delta}\right|_{x_{0}} \quad \text { where } \quad \Delta\left(x_{0}\right) \equiv\left(\frac{\mathrm{d} u_{+}}{\mathrm{d} x} u_{-}-u_{+} \frac{\mathrm{d} u_{-}}{\mathrm{d} x}\right)_{x_{0}} \tag{3.65}
\end{equation*}
$$

Substing these solutions back into (3.62) we have finally

$$
G_{x_{0}}(x)= \begin{cases}\frac{u_{+}\left(x_{0}\right) u_{-}(x)}{\Delta\left(x_{0}\right)} & x<x_{0} \tag{3.66}\\ \frac{u_{-}\left(x_{0}\right) u_{+}(x)}{\Delta\left(x_{0}\right)} & x>x_{0}\end{cases}
$$

Example 3.27

Solve

$$
L_{x}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-k^{2} y=h(x) \quad \text { subject to } \quad \lim _{x \rightarrow \pm \infty} y=0
$$

The required complementary functions are $u_{-}=\mathrm{e}^{k x}, u_{+}=\mathrm{e}^{-k x}$, so

$$
\Delta\left(x_{0}\right)=-k \mathrm{e}^{-k x} \mathrm{e}^{k x}-\mathrm{e}^{-k x} k \mathrm{e}^{k x}=-2 k .
$$

Hence

$$
\begin{aligned}
G_{x_{0}}(x) & =-\frac{1}{2 k} \begin{cases}\mathrm{e}^{-k\left(x_{0}-x\right)} & x<x_{0} \\
\mathrm{e}^{k\left(x_{0}-x\right)} & x>x_{0}\end{cases} \\
& =-\frac{1}{2 k} \mathrm{e}^{-k\left|x_{0}-x\right|}
\end{aligned}
$$

and

$$
y(x)=-\frac{1}{2 k}\left[\mathrm{e}^{-k x} \int_{-\infty}^{x} \mathrm{e}^{k x_{0}} h\left(x_{0}\right) \mathrm{d} x_{0}+\mathrm{e}^{k x} \int_{x}^{\infty} \mathrm{e}^{-k x_{0}} h\left(x_{0}\right)\right] \mathrm{d} x_{0} .
$$

Suppose $h(x)=\cos x=\Re \mathrm{e}\left(\mathrm{e}^{\mathrm{i} x}\right)$. Then

$$
-2 k y(x)=\Re \mathrm{e}\left(\mathrm{e}^{-k x}\left[\frac{\mathrm{e}^{x_{0}(i+k)}}{i+k}\right]_{-\infty}^{x}+\mathrm{e}^{k x}\left[\frac{\mathrm{e}^{x_{0}(i-k)}}{i-k}\right]_{x}^{\infty}\right)
$$

So

$$
y=-\frac{\cos x}{1+k^{2}}
$$

as expected.

3.13 Appendix

3.13.1 Arbitrary constants \mathcal{E} general solutions

How many initial conditions do we need to specify to pick out a unique solution of $L(f)=0$? Arrange $L f \equiv a_{n} f^{(n)}+a_{n-1} f^{(n-1)}+\cdots+a_{0}=0$ as

$$
\begin{equation*}
f^{(n)}(x)=-\left(\frac{a_{n-1}}{a_{n}} f^{(n-1)}(x)+\cdots+\frac{a_{0}}{a_{n}} f\right) \tag{3.67}
\end{equation*}
$$

If we differentiate both sides of this equation with respect to x, we obtain an expression for $f^{(n+1)}(x)$ in terms of $f^{(n)}(x)$ and lower derivatives. With the help of (3.67) we can eliminate $f^{(n)}(x)$ from this new equation, and thus obtain an expression for $f^{(n+1)}(x)$ in terms of $f(x)$ and derivatives up to $f^{(n-1)}(x)$. By differentiating both sides of our new equation and again using (3.67) to eliminate $f^{(n)}$ from the resulting equation, we can obtain an expression for $f^{(n+2)}(x)$ in terms of $f(x)$ and derivatives up to $f^{(n-1)}(x)$. Repeating this procedure a sufficient number of times we can obtain an expression for any derivative of f in terms of $f(x)$ and derivatives up to $f^{(n-1)}$. Consequently, if the values of these n functions are given at any point x_{0} we can evaluate the Taylor series

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right)^{2} f^{\prime \prime}\left(x_{0}\right)+\cdots \tag{3.68}
\end{equation*}
$$

for any value of x that lies near enough to x_{0} for the series to converge. Consequently, the functional form of $f(x)$ is determined by the original $n^{\text {th }}$ order differential equation and the n initial conditions $f\left(x_{0}\right), \ldots, f^{(n-1)}\left(x_{0}\right)$. Said another way, to pick out a unique solution to an nth order equation, we need n initial conditions.

The general solution of a differential equation is one that contains a sufficient supply of arbitrary constants to allow it to become any solution of the equation if these constants are assigned appropriate values. We have seen that once the n numbers $f^{(r)}\left(x_{0}\right)$ for $r=0, \ldots, n-1$ have been specified, the solution to the linear n th-order equation $L f=0$ is uniquely determined. This fact suggests that the general solution of $L f=0$ should include n arbitrary constants, one for each derivative. This is true, although the constants don't have to be the values of individual derivatives; all that is required is that appropriate choices of the constants will cause the r th derivative of the general solution to adopt any specified value.

Given the general solution we can construct n particular solutions f_{1}, \ldots, f_{n} as follows: let f_{1} be the solution in which the first arbitrary constant, k_{1}, is unity and the others zero, f_{2} be the solution in which the second constant, k_{2}, is unity and the other zero, etc. It is easy to see that the general solution is

$$
\begin{equation*}
f(x)=\sum_{r=1}^{n} k_{r} f_{r}(x) \tag{3.69}
\end{equation*}
$$

That is, the general solution is a linear combination of n particular solutions, that is, solutions with no arbitrary constant.

3.13.2 Integrating factors for second order differential equations

Now suppose we have a solution u :

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}+p(x) \frac{\mathrm{d} u}{\mathrm{~d} x}+q(x) u=0 \tag{3.70}
\end{equation*}
$$

Then write $f=u v$ and $u^{\prime} \equiv \frac{\mathrm{d} u}{\mathrm{~d} x}$ etc. so that

$$
\begin{equation*}
f^{\prime}=u^{\prime} v+u v^{\prime} \quad ; \quad f^{\prime \prime}=u^{\prime \prime} v+2 u^{\prime} v^{\prime}+u v^{\prime \prime} \tag{3.71}
\end{equation*}
$$

Substituting these results into (3.14) we obtain

$$
\begin{align*}
h & =f^{\prime \prime}+p f^{\prime}+q f \\
& =u^{\prime \prime} v+2 u^{\prime} v^{\prime}+u v^{\prime \prime}+p u^{\prime} v+p u v^{\prime}+q u v \\
& =v\left(u^{\prime \prime}+p u^{\prime}+q u\right)+u v^{\prime \prime}+2 u^{\prime} v^{\prime}+p u v^{\prime} \tag{3.72}\\
& =\quad 0 \quad+u v^{\prime \prime}+2 u^{\prime} v^{\prime}+p u v^{\prime} .
\end{align*}
$$

Now define $w \equiv v^{\prime}$ and find

$$
u w^{\prime}+\left(2 u^{\prime}+p u\right) w=h \Rightarrow\left\{\begin{align*}
\mathrm{IF} & =\exp \left[\int\left(2 \frac{u^{\prime}}{u}+p\right) \mathrm{d} x\right] \tag{3.73}\\
& =u^{2} \mathrm{e}^{2} p \mathrm{~d} x
\end{align*}\right.
$$

Finally can integrate

$$
\begin{equation*}
v^{\prime}(x)=w(x)=u^{-2}(x) \mathrm{e}^{-\int^{x} p \mathrm{~d} x} \int_{x_{0}}^{x} \mathrm{e}^{\int^{x^{\prime}}} p \mathrm{~d} x h u \mathrm{~d} x^{\prime} \tag{3.74}
\end{equation*}
$$

Thus if can find one solution, u, of any second-order linear equation, we can find the general solution $f(x)=\alpha u(x)+u(x) v\left(x, x_{0}\right)$.

[^0]: * The allowed values of α are precisely those for which you get the same value of X / Y from both of equations (3.48).

