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1 Complex Numbers I : Friendly Complex
Numbers

Complex numbers are widely used in physics. The solution of physical equations
is often made simpler through the use of complex numbers and we will study examples
of this when solving differential equations later in this course. Another particularly
important application of complex numbers is in quantum mechanics where they play
a central role representing the state, or wave function, of a quantum system. In this
course in the I will give a straightforward introduction to complex numbers and to
simple functions of a complex variable. The first Section “Friendly Complex Numbers”
is intended to provide a simple introduction to complex numbers suitable for those who
have not studied the subject.

1.1 Why complex numbers?

The obvious first question is “Why introduce complex numbers?”. The logical
progression follows simply from the need to solve equations of increasing complexity.
Thus we start with natural numbers (positive integers) 1, 2, 3, . . .

But 20 + y = 12 ⇒ y = −8 → integers . . . ,−3,−2,−1, 0, 1, 2, . . .
But 4x = 6 ⇒ x = 3

2
→ rationals

But x2 = 2 ⇒ x =
√

2 → irrationals
But x2 = −1 ⇒ x = i → complex nos
Multiples of i are called pure imaginary numbers. A general complex number

is the sum of a multiple of 1 and a multiple of i such as z = 2 + 3i. We often use the
notation z = a + ib, where a and b are real. (Sometimes the symbol j instead if i is
used - for example in circuit theory where i is reserved for a current.)

We define operators for extracting a, b from z: a ≡ �e(z), b ≡ �m(z). We call a
the real part and b the imaginary part of z.

1.2 Argand diagram (complex plane)

Complex numbers can be represented in the (x,y) plane. Thus the complex number
z = a+ ib → point (a, b) in the ”complex” plane (or ”Argand diagram”):
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Using polar co-ordinates the point (a, b) can equivalently be represented by its
(r, θ) values. Thus with arg(z) ≡ θ = arctan(b/a) we have

z = |z|(cos θ + i sin θ) ≡ r(cos θ + i sin θ) (1.1).

Note that the length or modulus of the vector from the origin to the point (a, b) is
given by

|z| ≡ r =
√
a2 + b2 (1.2).

As we will show in the next Section de Moivre’s theorem states cos θ+i sin θ = eiθ,
the exponential of a complex argument, so an equivalent way of writing the polar form
is

z = reiθ . (1.3)

It is important to get used to this form as it proves to be very useful in many applica-
tions. Note that there are an infinite number of values of θ which give the same values
of cos θ and sin θ because adding an integer multiple of 2π to θ does not change them.
Often one gives only one value of θ when specifying the complex number in polar form
but, as we shall see, it is important to include this ambiguity when taking roots of a
complex number.

It also proves useful to define the complex conjugate z∗ of z by reversing the
sign of i, i.e.

z∗ ≡ a − ib (1.4).

The complex numbers z∗ and −z are also shown in the figure.

Example 1.1
Express z ≡ a + ib = −1 − i in polar form. Here r =

√
2 and arctan(b/a) =

arctan1 = π/4. However it is necessary to identify the correct quadrant for θ.
Since a and b are both negative so too are cos θ and sin θ. Thus θ lies in the third
quadrant θ = 5π

4 + 2nπ where n is any positive or negative integer. Thus finally
we have z =

√
2ei 5π

4 +2nπ, n = 0,±1,±2, · · ·, where we have made the ambiguity in
the phase explicit.
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1.3 Addition and subtraction

Addition and subtraction of complex numbers follow the same rules as for ordinary
numbers except that the real and imaginary parts are treated separately:

z1 ± z2 ≡ (a1 ± a2) + i(b1 ± b2) (1.5)

Since the complex numbers can be represented in the Argand diagram by vectors,
addition and subtraction of complex numbers is the same as addition and subtraction
of vectors as is shown in Fig .

1.4 Multiplication and division

Remembering that i2 = −1 it is easy to define multiplication for complex numbers :

z1z2 = (a1 + ib1)(a2 + ib2)
≡ (a1a2 − b1b2) + i(a1b2 + b1a2)

(1.6)

Note that the product of a complex number and its complex conjugate, |z|2 ≡
zz∗ = (a2 + b2), is real (and ≥ 0) and, c.f. eq (1.2), is given by the square of the length
of the vector representing the complex number zz∗ ≡ |z|2 = (a2 + b2).

It is necessary to define division also. This is done by multiplying the numerator
and denominator of the fraction by the complex conjugate of the denominator :

z1
z2

=
z1z

∗
2

z2z∗2
=
z1z

∗
2

|z2|2 (1.7)
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One may see that division by a complex number has been changed into multipli-
cation by a complex number. As a result the denominator becomes a real number and
all we now need to define complex division is the rule for multiplication of complex
numbers.

Multiplication and division are particularly simple when the polar form of the
complex number is used. If z1 = |z1|eiθ1 and z2 = |z2|eiθ2 , then their product is given
by

z1 ∗ z2 = |z1| ∗ |z2|ei(θ1+θ2). (1.8)

To determine z1
z2

note that

z = |z|(cos θ + i sin θ) = |z|eiθ

z∗ = |z|(cos θ − i sin θ) = |z|e−iθ

1
z

=
z∗

zz∗
=

e−iθ

|z| .
(1.9)

Thus
z1
z2

=
|z1|eiθ1 ∗ e−iθ2

|z2|
=

|z1|
|z2|e

i(θ1−θ2)

(1.10)

1.4.1 Graphical representation of multiplication & division

z1z2 = |z1||z2|ei(θ1+θ2)

z1
z2

=
|z1|
|z2|e

i(θ1−θ2)
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Example 1.2

Find the modulus |z1/z2| when
{
z1 = 1 + 2i
z2 = 1− 3i

Clumsy method:

∣∣∣∣z1z2
∣∣∣∣ = ∣∣∣∣1 + 2i

1 − 3i

∣∣∣∣ = |z1z∗2 |
|z2|2

=
|(1 + 2i)(1 + 3i)|

1 + 9
=

|(1 − 6) + i(2 + 3)|
10

=
√

25 + 25
10

=
√

2
2

=
1√
2

Elegant method:

∣∣∣∣z1z2
∣∣∣∣ = |z1|

|z2| =
√

1 + 4√
1 + 9

=
1√
2
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2 Complex Numbers II

2.1 Simple functions of z

The definition of the exponential, cosine and sine functions of a real variable can be
done by writing their series expansions :

ex = 1 + x+
x2

2!
+ · · · + xn

n!
+ · · ·

cosx = 1 − x2

2!
+
x4

4!
− · · · + (−1)n

x2n

(2n)!
+ · · ·

sinx = x− x3

3!
+
x5

5!
− · · · + (−1)n

x2n+1

(2n+ 1)!
+ · · ·

(2.1)

These expansions are defined for x < 1 where the infinite series converges. For small
x a few of terms may be a sufficient to provide a good approximation. Thus for very
small x, sinx ≈ x.

2.1.1 The complex exponential function
In a similar manner we may define functions of the complex variable z. The

complex exponential is defined by

ez = 1 + z +
z2

2!
+ · · · (2.2)

A special case is if z is purely imaginary z = iθ. Using the fact that i2n = 1 or −1 for
n even or odd and i2n+1 = i or −i for n even or odd we may write

eiθ =
(
1 − θ2

2!
+
θ4

4!
+ · · ·

)
+ i
(
θ − θ3

3!
+ · · ·

)
= cos θ + i sin θ (de Moivre’s theorem)

(2.3)

This is the relation that we used in writing a complex number in polar form, c.f. eq
(1.3). Thus

z = |z|(cos θ + i sin θ) = |z|eiθ

z∗ = |z|(cos θ − i sin θ) = |z|e−iθ

1
z

=
z∗

zz∗
=

e−iθ

|z| .
(2.4)

We may find a useful relation between sines and cosines and complex exponentials.
Adding and then subtracting the first two of equations (2.4) we find that

cos θ = 1
2 (eiθ + e−iθ)

sin θ = 1
2i

(eiθ − e−iθ)
(2.5)
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2.1.2 The complex sine and cosine functions
In a similar manner we can define cos z and sin z by replacing the argument x in

(2.1) by the complex variable z. The analogue of de Moivre’s theorem is

eiz =
(
1 − z2

2!
+
z4

4!
+ · · ·

)
+ i
(
z − z3

3!
+ · · ·

)
= cos z + i sin z

(2.6)

Similarly one has
cos z = 1

2 (eiz + e−iz)

sin z = 1
2i(e

iz − e−iz)
(2.7)

From this we learn that the cosine and the sine of an imaginary angle are

cos(ib) = 1
2 (e−b + eb) = cosh b

sin(ib) = 1
2i

(e−b − eb) = i sinh b,
(2.8)

where we have used the definitions of the hyperbolic functions

cosh b ≡ 1
2 (eb + e−b)

sinh b ≡ 1
2 (eb − e−b).

(2.9)

Note:

Hyperbolic functions get their name from the identity cosh2 θ− sinh2 θ = 1, which
is readily proved from (2.9) and is reminiscent of the equation of a hyperbola,
x2 − y2 = 1.

2.1.3 The complex logarithm
The logarithmic function is the inverse of the exponential function meaning that

if one acts on z by the logarithmic function and then by the exponential function one
gets just z, eln z = z. We may use this property to define the logarithm of a complex
variable :

eln z = z = |z|eiθ = eln |z|eiθ = eln |z|+iθ

⇒ ln z = ln |z| + i arg(z)
(a) (b)

(2.10)

Part (a) is just the normal logarithm of a real variable and gives the real part of the
logarithmic fiunction while part (b) gives its imaginary part. Note that the infinite
ambiguity in the phase of z is no longer present in ln z because the addition of an integer
multiple of 2π to the argument of z changes the imaginary part of the logarithm by
the same amount. Thus it is essential, when defining the logarithm, to know precisely
the argument of z.
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2.2 de Moivre’s theorem and trigonometric identities

Using the rules for multiplication of complex numbers gives the general form of de
Moivre’s theorem :

zn = (reiθ)n = rneinθ = rn(cosnθ + i sinnθ) (2.11)

for any integer n.

2.2.1 Trigonometric identities
For r = 1 eq (2.11) becomes

(eiθ)n = (cos θ + i sin θ)n = cosnθ + i sinnθ. (2.12)

This form generates simple identities for cosnθ and sinnθ. For example, for n = 2 we
have, equating the real and imaginary parts of the equation

cos 2θ = cos2 θ − sin2 θ

sin 2θ = 2 cos θ sin θ
(2.13)

The complex exponential is very useful in establishing trigonometric identities.
We have

cos(a + b) + i sin(a + b) = ei(a+b) = eiaeib

= (cos a + i sina)(cos b + i sin b)
= (cos a cos b − sin a sin b) + i(cos a sin b+ sin a cos b)

where we have used the property of exponentials that ei(a+b) = eiaeib. This is an
example of a complex equation relating a complex number on the left hand size (LHS)
to a complex number on the right hand side (RHS). To solve it we must equate the
real parts of the LHS and the RHS and separately the imaginary parts of the LHS and
RHS. Thus a complex equation is equivalent to two real equations. Comparing real
and imaginary parts on the two sides of (2.14), we deduce that

cos(a+ b) = cos a cos b− sin a sin b
sin(a+ b) = sin a cos b + cos a sin b

(2.14)

2.2.2 Identities for complex sines and cosines
We may use the result of (2.7) to evaluate the cosine of a complex number:

cos z = cos(a+ ib)

= 1
2 (e(ia−b) + e(−ia+b))

= 1
2 (e−b(cos a+ isina) + eb(cos a − i sin a))

= cos a cosh b − i sin a sinh b.

(2.15)

Analogously
sin z = sin a cosh b+ i cos a sinh b. (2.16)
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2.3 Uses of de Moivre’s theorem

It is often much easier and more compact to work with the complex exponential rather
than with sines and cosines. Here I give just three examples; you will encounter more
in the discussion of differential equations and in the problem sets.

Example 2.1
Find (1 + i)4. Taking powers is much simpler in polar form so we write (1 + i) =√

(2)eiπ/4 . Hence (1 + i)4 = (
√

(2)eiπ/4)4 = 16e2πi = 16.

Example 2.2
Solving differential equations is often much simpler using complex exponentials as
we shall discuss in detail in later lectures. As an introductory example I consider
here the solution of simple harmonic motion, d2y

dθ2 + y = 0. The general solution is
well known y = A cos θ + B sin θ where A and B are real constants. To solve it
using the complex exponential we first write y = �ez so that the equation becomes
d2�ez
dθ2 +�ez = �e(d2z

dθ2 + z) = 0 The solution to the equation d2z
dθ2 + z = 0 is simply

z = Ceiθ where C is a (complex) constant. (You may check that this is the case
simply by substituting the answer in the original equation). Writing C = A− iB
one finds, using de Moivre,

y = �ez = �e((A − iB)(cos θ + i sin θ))
= A cos θ +B sin θ

(2.17)

Thus we have derived the general solution in one step - there is no need to look
for the sine and cosine solutions separately. Although the saving in effort through
using complex exponentials is modest in this simple example, it becomes significant
in the solution of more general differential equations.

Example 2.3
Series involving sines and cosines may often be summed using de Moivre. As an
example we will prove that for 0 < r < 1

∞∑
n=0

rn sin(2n+ 1)θ =
(1 + r) sin θ

1 − 2r cos 2θ + r2

Proof:
∞∑
n=0

rn sin(2n + 1)θ =
∑
n

rn�m(ei(2n+1)θ) = �m

(
eiθ
∑
n

(re2iθ)n
)

= �m

(
eiθ 1

1 − re2iθ

)
= �m

(
eiθ(1 − re−2iθ)

(1 − re2iθ)(1 − re−2iθ)

)
=

sin θ + r sin θ
1 − 2r cos 2θ + r2
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2.4 Curves in the complex plane

The locus of points satisfying some constraint on a complex parameter traces out a
curve in the complex plane. For example the constraint |z| = 1 requires that the length
of the vector from the origin to the point z is constant and equal to 1. This clearly
corresponds to the set of points lying on a circle of unit radius.

Instead of determining the geometric structure of the constraint one may instead
solve the constraint equation algebraically and look for the equation of the curve.
This has the advantage that the method is in principle straightforward although the
details may be algebraically involved whereas the geometical construction may not be
obvious. In Cartesian coordinates the algebraic constraint corresponding to |z| = 1 is
|z|2 = a2 + b2 = 1 which is the equation of a circle as expected. In polar coordinates
the calculation is even simpler |z| = r = 1.

As a second example consider the constraint |z − z0| = 1. This is the equation of
a unit circle centre z0 as may be immediately seen by changing the coordinate system
to z′ = (z − z0).

Alternatively one may solve the constraint algebraically to find |z − z0|2 = (a −
a0)2 +(b−b0)2 = 1 which is the equation of the unit circle centred at the point (a0, b0).
The solution in polar coordinates is not so straightforward in this case, showing that
it is important to try the alternate forms when looking for the algebraic solution. To
illustrate the techniques for finding curves in the complex plane in more complicated
cases I present some further examples:

Example 2.4

What is the locus in the Argand diagram that is defined by
∣∣∣∣z − i
z + i

∣∣∣∣ = 1?

Equivalently we have |z − i| = |z + i|, so the distance to z from (0, 1) is the same
as the distance from (0,−1). Hence the solution is the “real axis”.

Alternatively we may solve the equation

a2 + (b− 1)2 = a2 + (b + 1)2

which gives b = 0, a arbitrary, corresponding to the real axis.

Example 2.5
What is the locus in the Argand diagram that is defined by arg

( z

z + 1

)
=
π

4
?

Equivalently arg(z) − arg(z + 1) =
π

4
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Solution: “portion of circle through (0, 0) and (−1, 0)”
The x-coordinate of the centre is − 1

2
by symmetry. The angle subtended by a

chord at the centre is twice that subtended at the circumference, so here it is π/2.
With this fact it easily follows that the y-coordinate of the centre is 1

2 .

Try solving this example algebraically.

The lower portion of circle is arg
( z

z + 1

)
= −3π

4

2.5 Roots of polynomials

Complex numbers enable us to find roots for any polynomial

P (z) ≡ anz
n + an−1z

n−1 + · · · + a0. (2.18)

That is, there is at least one, and perhaps as many as n complex numbers zi such that
P (zi) = 0. Many physical problems involve such roots.

In the case n = 2 you already know a general formula for the roots. There is a
similar formula for the case n = 3 and historically this is important because it lead
to the invention of complex numbers. However, it can be shown that such general
formulae do not exist for equations of higher order. We can, however, find the roots of
specially simple polynomials.
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2.5.1 Special polyniomials
We start with something really simple. Consider the nth roots of unity (n is an

integer):
xn = 1 ⇒ x = 11/n

Now in taking roots it is crucial to allow for the ambiguity in the phase of a
(complex) number

1 = e2mπi ⇒ 11/n = e2mπi/n

= cos
(2mπ

n

)
+ i sin

(2mπ
n

) (2.19)

In this equation m is an integer which can take positive or negative values or zero
(m ∈ Z). However it is not necessary to keep all these values when taking the nth
root because, as may be seen from eq (2.19), the roots corresponding to m and m+ n
are the same as the arguments of the sine and cosine differ by 2π. For this reason it
is sufficient to give just the n distinct roots and it is convenient to do this through a
choice of any n consecutive values of m.

e.g.

11/5 = cos
(2mπ

5

)
+ i sin

(2mπ
5

)
(m = 0, 1, 2, 3, 4).

The roots may be drawn in the Argand plane and correspond to five equally spaced
points in the plane :

In what follows I will illustrate the techniques of taking roots in more complicated
cases by a series of examples. In this we shall often need the coefficients of xryn−r in
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(x+ y)n. These are conveniently obtained from Pascal’s triangle:

(x+ y)0

(x+ y)1

(x+ y)2

(x+ y)3

(x+ y)4

(x+ y)5

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Each row is obtained from the one above by adding the numbers to right and left of
the position to be filled in.

Example 2.6
Consider the equation (z + i)7 + (z − i)7 = 0. This may be readily solved by the
techniques just discussed(

z + i
z − i

)7

= −1 = e(2m+1)πi

⇒ z + i
z − i

= e(2m+1)πi/7 ⇒ z
(
1 − e(2m+1)πi/7

)
= −i

(
1 + e(2m+1)πi/7

)
⇒ z = i

e(2m+1)πi/7 + 1
e(2m+1)πi/7 − 1

= i
e(2m+1)πi/14 + e−(2m+1)πi/14

e(2m+1)πi/14 − e−(2m+1)πi/14
= i

2 cos
(

2m+1
14

π
)

2i sin
(

2m+1
14 π

) .
The original equation can be written in another form

⇒ z7 − 21z5 + 35z3 − 7z = 0

⇒ z6 − 21z4 + 35z2 − 7 = 0 or z = 0

⇒ w3 − 21w2 + 35w − 7 = 0 (w ≡ z2)

Thus, using our solution for the roots of the original equation, we see the roots of
w3 − 21w2 + 35w − 7 = 0 are w = cot2

(
2m+1

14 π
)

(m = 0, 1, 2).

Example 2.7
Sometimes the underlying equation which can be solved by these techniques is not
obvious. For example - find the roots of

z3 + 7z2 + 7z + 1 = 0.

The ninth row of Pascal’s triangle is

1 8 28 56 70 56 28 8 1,

so
1
2 [(z + 1)8 − (z − 1)8] = 8z7 + 56z5 + 56z3 + 8z

= 8z[w3 + 7w2 + 7w + 1] (w ≡ z2).
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Now (z + 1)8 − (z − 1)8 = 0 when
z + 1
z − 1

= e2mπi/8 , i.e. when

z =
emπi/4 + 1
emπi/4 − 1

= −i cot(mπ/8) (m = 1, 2, . . . , 7),

so the roots of the given equation are z = − cot2(mπ/8), m = 1, 2, 3.

2.5.2 Characterizing a polynomial by its roots
Knowledge of a polynomial’s roots enables us to express the polynomial as a

product of linear terms

anz
n + an−1z

n−1 + · · · + a0 = an(z − r1)(z − r2) · · · (z − rn)

= an
(
zn − zn−1

n∑
j=1

rj + · · · + (−1)n
n∏
j=1

rj
)
.

(2.20)

Comparing the coefficients of zn−1 and z0 on the two sides, we deduce that
an−1

an
= −

∑
j

rj ;
a0

an
= (−1)n

∏
j

rj (2.21)

i.e. The two ratios are related to the sum and the product of the roots respectively.

Example 2.8
Show that

∑2
m=0 cot2

(
2m+1

14 π
)

= 21
Solution: From Example 2.6 we have that these numbers are the roots of w3 −
21w2 + 35w − 7 = 0.

Example 2.9
Note that from eq (2.20) it is clear that a polynomial may be characterized by (i)
its roots and (ii) any an. To illustrate the use of this representation show that

z2m − a2m

z2 − a2
=
(
z2−2az cos

π

m
+a2
)(
z2−2az cos

2π
m

+a2
)
· · ·
(
z2−2az cos

(m− 1)π
m

+a2
)
.

Solution: Consider P (z) ≡ z2m−a2m, a polynomial of order 2m with leading term
a2m = 1 and roots zr = aerπi/m . Define

Q(z) ≡ (z2−a2)
(
z2−2az cos

π

m
+a2

)(
z2−2az cos

2π
m

+a2
)
· · ·
(
z2−2az cos

(m − 1)π
m

+a2
)
.

This polynomial is of order 2m with leading coeff. a2m = 1 and with roots that
are the numbers

zr = a cos
rπ

m
±
√
a2 cos2

rπ

m
− a2

= a
(

cos
rπ

m
± i
√

1 − cos2
rπ

m

)
= ae±irπ/m (r = 0, 1, . . . ,m).

Thus P and Q are identical.
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3 Differential Equations

A differential equation is an equation in which an expression involving deriva-
tives of an unknown function is set equal to a known function. For example

df
dx

+ xf = sinx (3.1)

is a differential equation for f(x). To determine a unique solution of a differential
equation we require some initial data; in the case of (3.1), the value of f at some point
x. These data are often called initial conditions. Below we’ll discuss how many
initial conditions one needs.

Differential equations enable us to encapsulate physical laws: the equation governs
events everywhere and at all times; the rich variety of experience arises because at
different places and times different initial conditions select different solutions. Since
differential equations are of such transcending importance for physics, let’s talk about
them in some generality.

3.1 Differential operators

Every differential equation involves a differential operator.
functions: numbers → numbers (e.g. x → ex)
operators: functions → functions (e.g. f → αf ; f → 1/f ; f → f + α; . . .)
A differential operator does this mapping by differentiating the function one or

more times (and perhaps adding in a function, or multiplying by one, etc).(
e.g. f → df

dx
; f → d2f

dx2
; f → 2

d2f

dx2
+ f

df
dx

; . . .
)

It is useful name the operators. For example we could denote by L(f) the operation

f → df
dx

.

3.1.1 Order of a differential operator
The order of a differential operator is the order of the highest derivative contained

in it. So
L1(f) ≡ df

dx
+ 3f is first order,

L2(f) ≡ d2f

dx2
+ 3f is second order,

L3(f) ≡ d2f

dx2
+ 4

df
dx

is second order.

3.1.2 Linear operators
L is a linear operator if

L(αf + βg) = αL(f) + βL(g), (3.2)
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where α and β are (possibly complex) numbers.(
e.g. f → df

dx
and f → αf are linear, but not f → 1

f
and f → f+α are not.

)

3.2 Linearity

An expression of the type αf + βg that is a sum of multiples of two or more
functions is called a linear combination of the functions.

To a good approximation, many physical systems are described by linear differ-
ential equations L(f) = 0. Classical electrodynamics provides a notable example: the
equations (Maxwell’s) governing electric and magnetic fields in a vacuum are linear.
The related equation governing the generation of a Newtonian gravitational field is
also linear. Similarly in quantum mechanics the differential equations governing the
evolution of the system, such as the Schrodinger equation, are linear.

Suppose f and g are two solutions of the linear equation L(y) = 0 for different
initial conditions. For example, if L symbolizes Maxwell’s equations, f and g might
describe the electric fields generated by different distributions of charges. Then since L
is linear, L(f + g) = 0, so (f + g) describes the electric field generated by both charge
distributions taken together. This idea, that if the governing equations are linear,
then the response to two stimuli taken together is just the sum of the responses to the
stimuli taken separately, is known as the principle of superposition. This principle
is widely used to find the required solution to linear differential equations: we start by
finding some very simple solutions that individually don’t satisfy our initial conditions
and then we look for linear combinations of them that do.

Linearity is almost always an approximation that breaks down if the stimuli are
very large. For example, in consequence of the linearity of Maxwell’s equations, the
beam from one torch will pass right through the beam of another torch without being
affected by it. But the beam from an extremely strong source of light would scatter a
torch beam because the vacuum contains ‘virtual’ electron-positron pairs which respond
non-negligibly to the field of a powerful beam, and the excited electro-positron pairs
can then scatter the torch beam. In a similar way, light propagating through a crystal
(which is full of positive and negative charges) can rather easily modify the electrical
properties of a crystal in a way that affects a second light beam – this is the idea
behind non-linear optics, now an enormously important area technologically. Gravity
too is non-linear for very strong fields.

While non-linearity is the generic case, the regime of weak stimuli in which physics
is to a good approximation linear is often a large and practically important one. More-
over, when we do understand non-linear processes quantitatively, this is often done
using concepts that arise in the linear regime. For example, any elementary particle,
such as an electron or a quark, is a weak-field, linear-response construct of quantum
field theory.

3.3 Inhomogeneous terms
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We’ve so far imagined the stimuli to be encoded in the initial conditions. It is sometimes
convenient to formulate a physical problem so that at least some of the stimuli are
encoded by a function that we set our differential operator equal to. Thus we write

L
given

(f) =
sought

homogeneous

h(x)
given

inhomogeneous
(3.3)

Suppose f1 is the general solution of Lf = 0 and f0 is any solution of Lf = h. We
call f1 the complementary function and f0 the particular integral and then the
general solution of Lf = h is

f1 + f0.
Complementary fn Particular integral (3.4)

How many initial conditions do we need to specify to pick out a unique solution of
L(f) = 0? It is easy to determine this in a hand-waving way because the solution
to a differential equation requires integration. With a single derivative one needs to
perform one integration which introduces one integration constant which in turn must
be fixed by one initial condition. Thus the number of integration constants needed,
or equivalently the number of initial conditions, is just the order of the differential
equation. A more rigorous justification of this may be found in Appendix 6.4.1.

3.4 First-order linear equations

3.4.1 Integrating factor
Any first-order linear equation can be written in the form

df
dx

+ q(x)f = h(x). (3.5)

Since the solution to this equation implies an integration to remove the derivative the
general solution will have one arbitrary constant. The solution can be found by seeking
a function I(x) such that

I
df
dx

+ Iqf =
dIf
dx

= Ih ⇒ f(x) =
1

I(x)

∫ x

x0

I(x′)h(x′)dx′. (3.6)

x0 is the required arbitrary constant in the solution, and I is called the integrating
factor. We need Iq = dI/dx, so

ln I =
∫
q dx ⇒ I = e

∫
q dx

. (3.7)

Example 3.1
Solve

2x
df
dx

− f = x2.
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In standard form the equation reads

df
dx

− f

2x
= 1

2x

so q = − 1
2x

and by (3.7) I = e−
1
2 ln x =

1√
x
.

Plugging this into (3.6) we have f = 1
2

√
x

∫ x

x0

√
x′ dx′ = 1

3
(x2 − x

3/2
0 x1/2).

3.5 First order non-linear equations

Non-linear equations are generally not solvable analytically – in large measure
because their solutions display richer structure than analytic functions can describe.
There are some interesting special cases, however, in which analytic solutions of non-
linear equations can be derived†
3.5.1 Separable equations

The general form of a separable differential equation is

dy
dx

=
f(x)
g(y)

which is readily solved by ∫
g(y)dy =

∫
f(x)dx.

Example 3.2

dy
dx

= y2ex

Separating varibles gives ∫
dy/y2 =

∫
exdx

with solution

−1
y

= ex + c

or
y =

−1
(ex + c)

where c is a constant.

† These techniques may also provide simple ways of solving particular linear
equations.
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3.5.2 Almost separable equations
The general form

dy
dx

= f(ax + by)

where f is an arbitrary function and a and b are constants can be solved by the change
of variables z = ax+ by. Using dz

dx
= a + b dy

dx
one finds

dz
dx

= a + bf(z)

which is trivially separable and can be solved to give

x =
∫

1
(a+ bf(z))

dz.

Example 3.3

dy
dx

= (−4x+ y)2

In this case the right hand side is a function of −4x+y only so we change variable
to z = y − 4x giving

dz
dx

= −4 +
dy
dx

= z2 − 4

with solution

x =
∫

1
((z − 2)(z + 2))

dz

so x = 1
4 ln( (z−2)

(z+2) + C where C is a constant. Solving for y we find y = 4x +

2 (1+ke4x)
(1−ke4x) , where k is a constant.

Example 3.4
Another example is given by

dy
dx

=
x− y

x− y + 1

we define

u ≡ x− y + 1 and have
du
dx

= 1 − u− 1
u

⇒ u
du
dx

= 1,

which is trivially solvable.
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3.5.3 Homogeneous equations
Consider equations of the form

dy
dx

= f(y/x). (3.8)

Such equations are called homogeneous because they are invariant under a rescaling
of both variables: that is, if X = sx, Y = sy are rescaled variables, the equation
for Y (X) is identical to that for y(x). These equations are readily solved by the
substitution

y = vx ⇒ y′ = v′x+ v. (3.9)

We find ∫
dv

f(v) − v
=
∫

dx
x

= lnx+ constant. (3.10)

Example 3.5
Solve

xy
dy
dx

− y2 = (x+ y)2e−y/x.

Solution: Dividing through by xy and setting y = vx have

(v′x+ v) − v =
(1 + v)2

v
e−v ⇒ lnx =

∫
evvdv

(1 + v)2
.

The substitution u ≡ 1 + v transforms integral to

e−1

∫ ( 1
u
− 1
u2

)
eudu = e−1

[eu
u

]
.

3.5.4 The Bernoulli equation
Bernoulli’s equation has the form

dy
dx

+ P (x)y = Q(x)yn (3.11).

This is nonlinear but can readily be reduced to a linear equation by the change of
variable

z = y1−n (3.12).

Then
dz
dx

= (1 − n)y−n
dy
dx
.

Hence
dz
dx

+ (1 − n)P (x)z = (1 − n)Q(x).

Having converted the equation to a linear equation it can be solved by the techniques
we have developed.
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Example 3.6
Solve the differential equation

y′ + y = y2/3.

Changing varible to z = y1/3 leads to the equation z′ +z/3 = 1/3. The integrating
factor is ex/3 and so the solution is zex/3 =

∫
ex/3dx/3. This implies z = y1/3 =

1/3 + ce−x/3 where c is a constant.

3.6 Exact equations

Suppose x, y are related by φ(x, y) = 0. Then 0 = dφ = φxdx+ φydy (φx ≡ ∂φ/∂x
etc). Hence

dy
dx

= −φx
φy

(3.13)

Conversely, given y′ = f(x, y) we can ask if there exists a function φ(x, y) such that
f = φx/φy.

Example 3.7
Solve

dy
dx

=
(3x2 + 2xy + y2) tan x− (6x+ 2y)

(2x+ 2y)
.

Solution: Notice that

top × cosx = − ∂

∂x

[
(3x2 + 2xy + y2) cos x

]
and

bottom × cosx =
∂

∂y

[
(3x2 + 2xy + y2) cos x

]
so the solution is (3x2 + 2xy + y2) cos x = constant.

3.7 Equations solved by interchange of variables

Consider

y2 dy
dx

+ x
dy
dx

− 2y = 0.

As it stands the equation is non-linear, so apparently insoluble. But when we inter-
change the rôles of the dependent and independent variables, it becomes linear: on
multiplication by (dx/dy) get

y2 + x− 2y
dx
dy

= 0.
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3.8 Equations solved by linear transformation

Consider
dy
dx

= (x− y)2.

In terms of u ≡ y − x the equation reads du/dx = u2 − 1, which is trivially soluble.
Similarly, given

dy
dx

=
x− y

x− y + 1

we define

u ≡ x− y + 1 and have 1 − du
dx

=
u− 1
u

⇒ u
du
dx

= 1,

which is trivially soluble.

3.9 Second-order linear equations

The general second-order linear equation can be written in the form

d2f

dx2
+ p(x)

df
dx

+ q(x)f = h(x). (3.14)

Is there an integrating factor? Suppose ∃ I(x) s.t.
d2If

dx2
= Ih. Then

2
dI
dx

= Ip and
d2I

dx2
= Iq. (3.15)

These equations are unfortunately incompatible in most cases. Thus we cannot count
on there being an integrating factor, although we can use the integrating factor tech-
nique to find the general solution if a particular solution is known - see Appendix
6.4.2.

In this course we will restrict our attention to a class of second order differential
equations for which the general solution is known. This is the class in which the coef-
ficients p(x) and q(x) are constants. Such equations arise in many physical situations
and so their solution is of great practical importance.

3.9.1 Equations with constant coefficients
Suppose the coefficients of the unknown function f and its derivatives are mere

constants:

Lf = a2
d2f

dx2
+ a1

df
dx

+ a0f = h(x). (3.16)

The solution to this equation proceeds as discussed in Section 3.3 through a
combination of the complementary function and the particular integral. We start by
discussing the method to find the complementary function.
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The complementary function

We look for a complementary function y(x) that satisfies Ly = 0. We try y = eαx.
Substituting this into a2y

′′ + a1y
′ + a0y = 0 we find that the equation is satisfied ∀x

provided
a2α

2 + a1α+ a0 = 0. (3.17)

This condition for the exponent α is called the auxiliary equation. It has two roots

α± ≡ −a1 ±
√
a2
1 − 4a2a0

2a2
, (3.18)

so the CF is
y = A+eα+x + A−eα−x. (3.19)

Example 3.8
Solve

d2y

dx2
+ 4

dy
dx

+ 3y = 0.

The auxiliary equation is (α + 3)(α+ 1) = 0, so the CF is y = Ae−3x +Be−x.

Example 3.9
Solve

Ly =
d2y

dx2
− 2

dy
dx

+ 5y = 0.

The auxiliary equation is α = 1
2
(2±√

4 − 20) = 1±2i, so y = Ae(1+2i)x+Be(1−2i)x.
But this is complex!
However, L is real operator. So 0 = �e(Ly) = L[�e(y)] and �e(y) is also a solution.
Ditto �m(y). Consequently the solution can be written

y = ex
[
A′ cos(2x) +B′ sin(2x)

]
.

Example 3.10
Find the solutions to the equation of Exercise 3.9 for which y(0) = 1 and
(dy/dx)0 = 0.
Solution: We obtain simultaneous equations for A′ and B′ by evaluating the
general solution and its derivative at x = 0:

1 = A′

0 = A′ + 2B′ ⇒ B′ = − 1
2 ⇒ y = ex

[
cos(2x) − 1

2 sin(2x)
]
.
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3.9.2 Factorization of operators & repeated roots
The auxiliary equation (3.17) is just the differential equation Lf = 0 with d/dx

replaced by α. So just as the roots of a polynomial enables us to express the polynomial
as a product of terms linear in the variable, so the knowledge of the roots of the auxiliary
equation allows us to express L as a product of two first-order differential operators:

( d
dx

− α−
)( d

dx
− α+

)
f =

d2f

dx2
− (α− + α+)

df
dx

+ α−α+f

=
d2f

dx2
+
a1

a2

df
dx

+
a0

a2
≡ Lf

a2
,

(3.20)

where have used our formulae (2.21) for the sum and product of the roots of a plyno-
mial. The CF is made up of exponentials because( d

dx
− α−

)
eα−x = 0 ;

( d
dx

− α+

)
eα+x = 0.

What happens if a2
1 − 4a2a0 = 0? Then α− = α+ = α and

Lf =
( d

dx
− α
)( d

dx
− α
)
f. (3.21)

It follows that
L
(
xeαx

)
=
( d

dx
− α
)( d

dx
− α
)
xeαx

=
( d

dx
− α
)
eαx = 0,

and the CF is y = Aeαx +Bxeαx.

Example 3.11
Solve

d2y

dx2
− 2

dy
dx

+ y = 0.

The auxiliary equation is (α − 1)2 = 0, so y = Aex +Bxex.

3.9.3 Equations of higher order These results we have just derived generalize easily
to linear equations with constant coeffs of any order.

Example 3.12
Solve

d4y

dx4
− 2

d3y

dx3
+ 2

d2y

dx2
− 2

dy
dx

+ y = 0.

The auxiliary equation is (α − 1)2(α − i)(α + i) = 0, so

y = ex(A +Bx) + C cosx+D sinx.
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The Particular Integral

Recall from Section 3.3 that the general solution of Lf = h is CF+f0 where the
particular integal f0 is any function for which Lf0 = h. There is a general technique
for finding PIs. This technique, which centres on Green’s functions, lies beyond the
syllabus although it is outlined in Chapter 6. For simple inhomogeneous part h we can
get by with the use of trial functions. The type of function to be tried depends on the
nature of h.

3.9.4 Polynomial h Suppose h is a sum of some powers of x,

h(x) = b0 + b1x+ b2x
2 + · · · (3.22)

Then we try
f(x) = c0 + c1x+ c2x

2 + · · ·
⇒ f ′ = c1 + 2c2x+ · · ·

f ′′ = 2c2 + · · ·
(3.23)

so
h(x) = a2f

′′ + a1f
′ + a0f =(a0c0 + a1c1 + a22c2 + · · ·)

+ (a0c1 + a12c2 + · · ·)x
+ (a0c2 + · · ·)x2

+ · · ·

(3.24)

Comparing powers of x0, x1, . . . on the two sides of this equation, we obtained coupled
linear equations for the cr in terms of the br . We solve these equations from the bottom
up; e.g. for quadratic h

c2 =
b2
a0
,

c1 =
b1 − 2a1c2

a0
,

c0 =
b0 − a1c1 − 2a2c2

a0
.

(3.25)

Notice that the procedure doesn’t work if a0 = 0; the orders of the polynomials on left
and right then inevitably disagree. This difficulty may be resolved by recognizing that
the equation is then a first-order one for g ≡ f ′ and using a trial solution for g that
contains a term in x2.

Example 3.13
Find the PI for

f ′′ + 2f ′ + f = 1 + 2x+ 3x2.

Try f = c0 + c1x+ c2x
2; have

x2 :

x1 :

x0 :

c2 = 3
4c2 + c1 = 2

2c2 + 2c1 + c0 = 1

⎫⎪⎬⎪⎭ ⇒ c1 = 2(1 − 2c2) = −10
c0 = 1 − 2(c2 + c1) = 1 − 2(3 − 10) = 15
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Check
f = 15 − 10x+ 3x2,

2f ′ = (−10 + 6x) × 2,
f ′′ = 6,

L(f) = 1 + 2x+ 3x2.

3.9.5 Exponential f When h = Heγx, we try f = P eγx. Substituting this into the
general second-order equation with constant coefficients we obtain

P (a2γ
2 + a1γ + a0)eγx = Heγx. (3.26)

Cancelling the exponentials, solving for P , and substituting the result into f = P eγx,
we have finally

f =
Heγx

a2γ2 + a1γ + a0

=
Heγx

a2(γ − α−)(γ − α+)
where CF = A±eα±x.

(3.27)

Example 3.14
Find the PI for

f ′′ + 3f ′ + 2f = e2x.

So the PI is f =
e2x

4 + 6 + 2
= 1

12e2x.

If h contains two or more exponentials, we find separate PIs for each of them, and
then add our results to get the overall PI.

Example 3.15
Find the PI for

f ′′ + 3f ′ + 2f = e2x + 2ex.

Reasoning as above we conclude that f1 ≡ 1
12e2x satisfies f ′′1 + 3f ′1 + 2f1 = e2x.

and f2 ≡ 2ex

1 + 3 + 2
= 1

3ex satisfies f ′′2 + 3f ′2 + 2f2 = ex,

so 1
12e2x + 1

3ex satisfies the given equation.

From equation (3.27) it is clear that we have problem when part of h is in the
CF because then one of the denominators of our PI vanishes. The problem we have to
address is the solution of

Lf = a2

( d
dx

− α1

)( d
dx

− α2

)
f = Heα2x. (3.28)

P eα2x is not a useful trial function for the PI because Leα2x = 0. Instead we try
Pxeα2x. We have ( d

dx
− α2

)
Pxeα2x = P eα2x, (3.29)
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and
L
(
Pxeα2x

)
= a2

( d
dx

− α1

)
P eα2x = a2P (α2 − α1)eα2x. (3.30)

Hence, we can solve for P so long as α2 �= α1: P =
H

a2(α2 − α1)
.

Example 3.16
Find the PI for

f ′′ + 3f ′ + 2f = e−x.

The CF is Ae−2x +Be−x, so we try f = Pxe−x. We require

e−x =
( d

dx
+ 2
)( d

dx
+ 1
)
Pxe−x =

( d
dx

+ 2
)
P e−x

= P e−x.

Thus P = 1 and f = xe−x.

What if α1 = α2 = α and h = Heαx? Then we try f = Px2eαx:

Heαx = a2

( d
dx

− α
)2

Px2eαx = a2

( d
dx

− α
)
2Pxeαx

= 2a2P eαx ⇒ P =
H

2a2

3.9.6 Sinusoidal h

Suppose h = H cosx, so Lf ≡ a2f
′′ + a1f

′ + a0f = H cosx.

Clumsy method:
f = A cos x+B sinx
. . . . . .

Elegant method: Find solutions z(x) of the complex equation

Lz = Heix. (3.31)

Since L is real

�e(Lz) = L[�e(z)] = �e(Heix) = H�e(eix) = H cosx, (3.32)

so the real part of our solution z will answer the given problem.

Set z = P eix (P complex)

Lz = (−a2 + ia1 + a0)P eix ⇒ P =
H

−a2 + ia1 + a0
. (3.33)

Finally,

f = H�e

( eix

(a0 − a2) + ia1

)
= H

(a0 − a2) cos x+ a1 sinx
(a0 − a2)2 + a2

1

.

(3.34)
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Note:

We shall see below that in many physical problems explicit extraction of the real
part is unhelpful; more physical insight can be obtained from the first than the
second of equations (3.34). But don’t forget that �e operator! It’s especially
important to include it when evaluating the arbitrary constants in the CF by
imposing initial conditions.

Example 3.17
Find the PI for

f ′′ + 3f ′ + 2f = cosx.

We actually solve
z′′ + 3z′ + 2z = eix.

Hence

z = P eix where P =
1

−1 + 3i + 2
.

Extracting the real part we have finally

f = �e

( eix

1 + 3i

)
= 1

10(cos x+ 3 sinx).

What do we do if h = H sinx? We solve Lz = Heix and take imaginary parts of
both sides.

Example 3.18
Find the PI for

f ′′ + 3f ′ + 2f = sinx.

Solving z′′ + 3z′ + 2z = eix with z = P eix we have

P =
1

1 + 3i
⇒ f = �m

( eix

1 + 3i

)
= 1

10 (sinx− 3 cosx).

Note:

It is often useful to express A cos θ+B sin θ as Ã cos(θ+φ). We do this by noting
that cos(θ + φ) = cosφ cos θ − sinφ sin θ, so

A cos θ +B sin θ =
√
A2 +B2

( A√
A2 +B2

cos θ +
B√

A2 +B2
sin θ

)
=
√
A2 +B2 cos(θ + φ),

where cosφ = A/
√
A2 +B2 and sinφ = −B/√A2 +B2.



3.10 Application to Oscillators 29

Example 3.19
Find the PI for

f ′′ + 3f ′ + 2f = 3 cosx+ 4 sinx.

The right-hand side can be rewritten 5 cos(x + φ) = 5�e(ei(x+φ)), where φ =
arctan(−4/3). So our trial solution of the underlying complex equation is z =
P ei(x+φ). Plugging this into the equation, we find

P =
5

−1 + 3i + 2
=

5
1 + 3i

,

so the required PI is

f0 = 5�e

(ei(x+φ)

1 + 3i

)
= 1

2

[
cos(x+ φ) + 3 sin(x+ φ)

]
.

The last three examples are rather easy because eix does not occur in the CF
(which is Ae−x +Be−2x). What if eix is in the CF? Then we try z = Pxeix.

Example 3.20
Find the PI for

f ′′ + f = cosx ⇒ z′′ + z = eix

From the auxiliary equation we find that the equation can be written( d
dx

+ i
)( d

dx
− i
)
z = eix.

For the PI Pxeix we require

eix =
( d

dx
+ i
)( d

dx
− i
)
Pxeix =

( d
dx

+ i
)
P eix = 2iP eix

⇒ P =
1
2i

⇒ f = �e

(xeix

2i

)
= 1

2x sinx

3.9.7 Exponentially decaying sinusoidal h Since we are handling sinusoids by express-
ing them in terms of exponentials, essentially nothing changes if we are confronted by
a combination of an exponential and sinusoids:

Example 3.21
Find the PI for

f ′′ + f = e−x
(
3 cosx+ 4 sinx

)
.

The right-hand side can be rewritten 5e−x cos(x + φ) = 5�e(e(i−1)x+iφ), where
φ = arctan(−4/3). So our trial solution of the underlying complex equation is
z = P e(i−1)x+iφ. Plugging this into the equation, we find

P =
5

(i − 1)2 + 1
=

5
1 − 2i

.

Finally the required PI is

f0 = 5�e

(e(i−1)x+iφ

1 − 2i

)
= e−x

[
cos(x+ φ) − 2 sin(x+ φ)

]
.
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3.10 Application to Oscillators

Second-order differential equations with constant coefficients arise from all sorts of
physical systems in which something undergoes small oscillations about a point of
equilibrium. It is hard to exaggerate the importance for physics of such systems.
Obvious examples include the escapement spring of a watch, the horn of a loudspeaker
and an irritating bit of trim that makes a noise at certain speeds in the car. Less
familiar examples include the various fields that the vacuum sports, which include the
electromagnetic field and the fields whose excitations we call electrons and quarks.

The equation of motion of a mass that oscillates in response to a periodic driving
force mF cosωt is

mẍ = − mω2
0x − mγẋ + mF cosωt.

spring friction forcing (3.35)

Gathering the homogeneous and inhomogeneous terms onto the left- and right-hand
sides, respectively, we see that the associated complex equation is

z̈ + γż + ω2
0z = F eiωt. (3.36)

3.10.1 Transients The auxiliary equation of (3.36) is

α2 + γα+ ω2
0 = 0 ⇒ α = − 1

2
γ ± i

√
ω2

0 − 1
4
γ2

= − 1
2γ ± iωγ where ωγ ≡ ω0

√
1 − 1

4γ
2/ω2

0 .

Here we concentrate on the case that ω2
0− 1

4γ
2 > 0 which corresponds to the case there

are oscillating solutions. Using the solutions for α we may determine the CF

x = e−γt/2
[
A cos(ωγt) +B sin(ωγt)

]
= e−γt/2Ã cos(ωγt+ ψ), (3.37)

where ψ, the phase angle, is an arbitrary constant. Since γ > 0, we have that the
CF → 0 as t → ∞. Consequently, the part of motion that is decsribed by the CF is
called the transient response.

3.10.2 Steady-state solutions The PI of equation (3.36) is

x = �e

( F eiωt

ω2
0 − ω2 + iωγ

)
. (3.38)

The PI describes the steady-state response that remains after the transient has died
away.

In (3.38) the bottom =
√

(ω2
0 − ω2)2 + ω2γ2 eiφ, where φ ≡ arctan

( ωγ

ω2
0 − ω2

)
, so

the PI may also be written

x =
F�e

(
ei(ωt−φ)

)√
(ω2

0 − ω2)2 + ω2γ2
=

F cos(ωt− φ)√
(ω2

0 − ω2)2 + ω2γ2
. (3.39)
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Amplitude and phase of a
driven oscillator. Full lines are
for γ = 0.1ω0, dashed lines for
γ = 0.5ω0.

For φ > 0, x achieves the same phase as F at t greater by φ/ω, so φ is called the phase
lag of the response.

The amplitude of the response is

A =
F√

(ω2
0 − ω2)2 + ω2γ2

, (3.40)

which peaks when

0 =
dA−2

dω
∝ −4(ω2

0 − ω2)ω + 2ωγ2 ⇒ ω2 = ω2
0 − 1

2γ
2. (3.41)

ωR ≡√ω2
0 − γ2/2 is called the resonant frequency. Note that the frictional coefficient

γ causes ωR to be smaller than the natural frequency ω0 of the undamped oscillator.
The figure shows that the amplitude of the steady-state response becomes very

large at ω = ωR if γ/ω0 is small. The figure also shows that the phase lag of the
response increases from small values at ω < ωR to π at high frequencies. Many
important physical processes, including dispersion of light in glass, depend on this
often rapid change in phase with frequency.
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3.10.3 Power input Power in is W = F ẋ, where F = mF cosωt. Since �e(z1) ×
�e(z2) �= �e(z1z2), we have to extract real bits before multiplying them together

W = F ẋ = �e(mF eiωt) × �e
(
iωF ei(ωt−φ)

)√
(ω2

0 − ω2)2 + ω2γ2

=
ωmF 2√

(ω2
0 − ω2)2 + ω2γ2

[− cos(ωt) sin(ωt − φ)]

= −
1
2ωmF

2√
(ω2

0 − ω2)2 + ω2γ2
[sin(2ωt − φ) + sin(−φ)].

(3.42)

Averaging over an integral number of periods, the mean power is

W =
1
2ωmF

2 sinφ√
(ω2

0 − ω2)2 + ω2γ2
. (3.43)

3.10.4 Energy dissipated Let’s check that the mean power input is equal to the rate
of dissipation of energy by friction. The dissipation rate is

D = mγẋẋ =
mγω2F 2 1

2

(ω2
0 − ω2)2 + ω2γ2

. (3.44)

It is equal to work done because sinφ = γω/
√

(ω2
0 − ω2)2 + ω2γ2.

3.10.5 Quality factor Now consider the energy content of the transient motion that
the CF describes. By (3.37) its energy is

E = 1
2(mẋ2 +mω2

0x
2)

= 1
2mA

2e−γt
[
1
4γ

2 cos2 η + ωγγ cos η sin η + ω2
γ sin2 η + ω2

0 cos2 η
]

(η ≡ ωγt+ ψ)
(3.45)

For small γ/ω0 this becomes

E � 1
2m(ω0A)2e−γt. (3.46)

We define the quality factor Q to be

Q ≡ E(t)
E(t− π/ω0) − E(t+ π/ω0)

� 1
eπγ/ω0 − e−πγ/ω0

= 1
2 csch(πγ/ω0)

� ω0

2πγ
(for small γ/ω0).

(3.47)

Q is the inverse of the fraction of the oscillator’s energy that is dissipated in one period.
It is approximately equal to the number of oscillations conducted before the energy
decays by a factor of e.
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3.11 Systems of Linear DE’s with Constant Coefficients

Many physical systems require more than one variable to quantify their configuration:
for example a circuit might have two connected current loops, so one needs to know
what current is flowing in each loop at each moment. A set of differential equations
– one for each variable – will determine the dynamics of such a system. If these
equations are linear and have constant coefficients, the procedure for solving them is a
minor extension of the procedure for solving a single linear differential equation with
constant coefficients.

The steps are:
1. Arrange the equations so that terms on the left are all proportional to an unknown

variable, and already known terms are on the right.
2. Find the general solution of the equations that are obtained by setting the right

sides to zero. The result of this operation is the CF. It is usually found by replacing
the unknown variables by multiples of eαt (if t is the independent variable) and
solving the resulting alegraic equations.

3. Find a particular integral by putting in a trial solution for each term – polynomial,
exponential, etc. – on the right hand side.

This recipe is best illustrated by some examples.

Example 3.22
Solve

dx
dt

+
dy
dt

+ y = t,

−dy
dt

+ 3x+ 7y = e2t − 1.

It is helpful to introduce the shorthand

L
(
x
y

)
=

⎛⎜⎝
dx
dt

+
dy
dt

+ y

3x −dy
dt

+ 7y

⎞⎟⎠ .

To find CF

Set
(
x
y

)
=
(
Xeαt

Y eαt

)
α,X, Y complex nos to be determined

Plug into L
(
x
y

)
= 0 and cancel the factor eαt

αX + (α + 1)Y = 0,
3X + (7 − α)Y = 0.

(3.48)
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The theory of equations, to be discussed early next term, shows that these equa-
tions allow X,Y to be non-zero only if the determinant∣∣∣∣α α+ 1

3 7 − α

∣∣∣∣ = 0,

which in turn implies that α(7 − α) − 3(α + 1) = 0 ⇒ α = 3, α = 1. We
can arrive at the same conclusion less quickly by using the second equation to
eliminate Y from the first equation. So the bottom line is that α = 3, 1 are the
only two viable values of α. For each value of α either of equations (3.48) imposes
a ratio∗ X/Y
α = 3 ⇒ 3X + 4Y = 0 ⇒ Y = − 3

4X,
α = 1 ⇒ X + 2Y = 0 ⇒ Y = − 1

2X.
Hence the CF made up of(

x
y

)
= Xa

(
1
− 3

4

)
e3t and

(
x
y

)
= Xb

(
1
− 1

2

)
et.

The two arbitrary constants in this CF reflect the fact that the original equations
were first-order in two variables.
To find PI

(i) Polynomial part

Try
(
x
y

)
=
(
X0 +X1t
Y0 + Y1t

)
Plug into L

(
x
y

)
=
(

t
−1

)
X1 + Y1 + Y1t+ Y0 = t 3(X0 +X1t) − Y1 + 7(Y0 + Y1t) = −1

⇓ ⇓
Y1 = 1; X1 + Y1 + Y0 = 0 3X0 + 7Y0 = 0; 3X1 + 7Y1 = 0

⇓ ⇓
X1 + Y0 = −1 X1 = − 7

3

Consequently, Y0 = −1 + 7
3 = 4

3 and X0 = − 7
3Y0 = − 28

9

Thus (
x
y

)
=
(− 28

9 − 7
3 t

4
3

+ t

)
(ii) Exponential part

Try
(
x
y

)
=
(
X
Y

)
e2t

∗ The allowed values of α are precisely those for which you get the same value of X/Y from

both of equations (3.48).
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Plug into L
(
x
y

)
=
(

0
e2t

)
and find

2X + (2 + 1)Y = 0 ⇒ X = − 3
2Y

3X + (−2 + 7)Y = 1 ⇒ (− 9
2

+ 5)Y = 1

Hence Y = 2, X = −3.

Putting everything together the general solution is(
x
y

)
= Xa

(
1
− 3

4

)
e3t +Xb

(
1
− 1

2

)
et +

(−3
2

)
e2t +

(− 28
9 − 7

3t
4
3 + t

)
(3.49)

We can use the arbitrary constants in the above solution to obtain a solution in
which x and y or ẋ and ẏ take on any prescribed values at t = 0:

Example 3.23
For the differential equations of Example 3.22, find the solution in which

ẋ(0) = − 19
3

ẏ(0) = 3

Solution: Evaluate the time derivative of the GS at t = 0 and set the result equal
to the given data:(− 19

3
3

)
= 3Xa

(
1
− 3

4

)
+Xb

(
1
− 1

2

)
+ 2
(−3

2

)
+
(− 7

3
1

)
Hence

3Xa +Xb = 2
− 9

4Xa − 1
2Xb = −2

⇒ Xa =
−2
−3/2

= 4
3

Xb = 2 − 3Xa = −2

Here’s another, more complicated example.

Example 3.24
Solve

d2x

dt2
+

dy
dt

+ 2x = 2 sin t+ 3 cos t+ 5e−t

dx
dt

+
d2y

dt2
− y = 3 cos t− 5 sin t− e−t

given
x(0) = 2; y(0) = −3
ẋ(0) = 0; ẏ(0) = 4

To find CF

Set x = Xeαt, y = Y eαt

⇒ (α2 + 2)X + αY
αX + (α2 − 1)Y = 0 ⇒ α4 = 2

⇒ α2 = ±
√

2 ⇒ α = ±β, ±iβ (β ≡ 21/4)
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and Y/X = −(α2 + 2)/α so the CF is(
x
y

)
= Xa

(
β

2 +
√

2

)
e−βt +Xb

( −β
2 +

√
2

)
eβt

+Xc

(
iβ

2 −√
2

)
e−iβt +Xd

( −iβ
2 −√

2

)
eiβt

Notice that the functions multiplying Xc and Xd are complex conjugates of one
another. So if the solution is to be real Xd has to be the complex conjugate of
Xc and these two complex coefficients contain only two real arbitrary constants
between them. There are four arbitrary constants in the CF because we are solving
second-order equations in two dependent variables.
To Find PI

Set (x, y) = (X,Y )e−t ⇒

X − Y + 2X = 5
−X + Y − Y = − 1

⇒ X = 1
Y = −2 ⇒

(
x
y

)
=
(

1
−2

)
e−t

Have 2 sin t+ 3 cos t = �e(
√

13ei(t+φ)), where cosφ = 3/
√

13, sinφ = −2/
√

13.
Similarly 3 cos t− 5 sin t = �e(

√
34ei(t+ψ)), where cosψ = 3/

√
34, sinψ = 5/

√
34

Set (x, y) = �e[(X,Y )eit] and require

−X + iY + 2X = X + iY =
√

13eiφ

iX − Y − Y = iX − 2Y =
√

34eiψ
⇒ −iY =

√
13eiφ + i

√
34eiψ

iX = 2i
√

13eiφ −√
34eiψ

so
x = �e(2

√
13ei(t+φ) + i

√
34ei(t+ψ))

= 2
√

13(cos φ cos t− sinφ sin t) −√
34(sinψ cos t+ cosψ sin t)

= 2[3 cos t+ 2 sin t]− 5 cos t − 3 sin t
= cos t+ sin t

Similarly

y = �e(
√

13iei(t+φ) −√
34ei(t+ψ))

=
√

13(− sinφ cos t− cosφ sin t) −√
34(cosψ cos t− sinψ sin t)

= 2 cos t− 3 sin t− 3 cos t+ 5 sin t
= − cos t+ 2 sin t.

Thus the complete PI is(
x
y

)
=
(

cos t+ sin t
− cos t+ 2 sin t

)
+
(

1
−2

)
e−t.
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For the initial-value problem

PI(0) =
(

1
−2

)
+
(

1
−1

)
=
(

2
−3

)
; ṖI(0) =

(−1
2

)
+
(

1
2

)
=
(

0
4

)
CF(0) =

(
2
−3

)
−
(

2
−3

)
=
(

0
0

)
; ĊF(0) =

(
0
4

)
−
(

0
4

)
=
(

0
0

)
So the PI satisfies the initial data and Xa = Xb = Xc = Xd = 0.
In general the number of arbitrary constants in the general solution should be

the sum of the orders of the highest derivative in each variable. There are exceptions
to this rule, however, as the following example shows. This example also illustrates
another general point: that before solving the given equations, one should always try
to simplify them by adding a multiple of one equation or its derivative to the other.

Example 3.25
Solve

dx
dt

+
dy
dt

+ y = t,

d2x

dt2
+

d2y

dt2
+ 3x+ 7y = e2t.

(3.50)

We differentiate the first equation and substract the result from the seond. Then
the system becomes first-order – in fact the system solved in Example 3.22. From
(3.49) we see that the general solution contains only two arbitrary constants rather
than the four we might have expected from a cursory glance at (3.50). To un-
derstand this phenomenon better, rewrite the equations in terms of z ≡ x+ y as
ż + z − x = t and z̈ + 7z − 4x = e2t. The first equation can be used to make x a
function x(z, ż, t). Using this to eliminate x from the second equation we obtain
an expression for z̈(z, ż, t). From this expression and its derivatives w.r.t. t we can
construct a Taylor series for z once we are told z(t0) and ż(t0). Hence the general
solution should have just two arbitrary constants.

3.11.1 LCR circuits The dynamics of a linear electrical circuit is governed by a sys-
tem of linear equations with constant coefficients. These may be solved by the general
technique described at the start of Chapter 4. In many cases they may be more easily
solved by judicious addition and subtraction along the lines illustrated in Example
3.25.



38 Chapter 3: Differential Equations

Using Kirchhoff’s laws

RI1 +
Q

C
+ L

dI1
dt

= E1

L
dI2
dt

+RI2 − Q

C
= 0.

(3.51)

We first differentiate to eliminate Q
d2I1
dt2

+
R

L

dI1
dt

+
1
LC

(I1 − I2) = 0

d2I2
dt2

+
R

L

dI2
dt

− 1
LC

(I1 − I2) = 0.
(3.52)

We now add the equations to obtain
d2S

dt2
+
R

L

dS
dt

= 0 where S ≡ I1 + I2. (3.53)

Subtracting the equations we find
d2D

dt2
+
R

L

dD
dt

+
2
LC

D = 0 where D ≡ I1 − I2. (3.54)

We now have two uncoupled equations, one for S and one for D. We solve each in the
standard way (Section 3.10).

3.11.2 Time evolution of the LCR circuits The auxiliary equation for (3.53) is α2 +
Rα/L = 0, and its roots are

α = 0 ⇒ S = constant and α = −R/L ⇒ S ∝ e−Rt/L. (3.55)
Since the right side of (3.53) is zero, no PI is required.

The auxiliary equation for (3.54) is

α2 +
R

L
α+

2
LC

= 0 ⇒ α = − 1
2

R

L
± i√

LC

√
2 − 1

4CR
2/L = − 1

2

R

L
± iωR. (3.56)

Again no PI is required.
Adding the results of (3.55) and (3.56), the general solutions to (3.53) and (3.54)

are
I1 + I2 = S = S0 + S1e−Rt/L ; I1 − I2 = D = D0e−Rt/2L sin(ωRt+ φ).

From the original equations (3.52) it is easy to see that the steady-state currents are
I1 = I2 = 1

2
S0 = 1

2
E1/R. Hence, the final general solution is

I1 + I2 = S(t) = Ke−Rt/L +
E1

R

I1 − I2 = D(t) = D0e−Rt/2L sin(ωRt+ φ).
(3.57)

Example 3.26
The battery is first connected up at t = 0. Determine I1, I2 for t > 0.
Solution: We have I1(0) = I2(0) = 0 and from the diagram we see that İ1(0) =
E1/L and İ2 = 0. Looking at equations (3.57) we set K = −E1/R to ensure
that I1(0) + I2(0) = 0, and φ = 0 to ensure that I1(0) = I2(0). Finally we set

D0 =
E1

LωR
to ensure that Ḋ(0) =

E1

L
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3.12 Green Functions∗

In this section we describe a powerful technique for generating particular integrals. We
illustrate it by considering the general second-order linear equation

Lx(y) ≡ a2(x)
d2y

dx2
+ a1(x)

dy
dx

+ a0(x)y = h(x). (3.58)

On dividing through by a2 one sees that without loss of generality we can set a2 = 1.

3.12.1 The Dirac δ-function Consider series of ever bumpier functions such that∫∞
−∞ f(x) dx = 1, e.g.

Define δ(x) as limit of such functions. (δ(x) itself isn’t a function really.) Then

δ(x) = 0 for x �= 0 and
∫ ∞

−∞
δ(x) dx = 1

δ’s really important property is that∫ b

a

f(x)δ(x − x0) dx = f(x0) ∀
{
a < x0 < b
f(x)

Exercises (1):

(i) Prove that δ(ax) = δ(x)/|a|. If x has units of length, what dimensions has δ?
(ii) Prove that δ(f(x)) =

∑
xk
δ(x−xk)/|f ′(xk)|, where the xk are all points satisfying

f(xk) = 0.

3.12.2 Defining the Green’s function Now suppose for each fixed x0 we had the func-
tion Gx0(x) such that

LxGx0 = δ(x− x0). (3.59)

∗ Lies beyond the syllabus
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Then we could easily obtain the desired PI:

y(x) ≡
∫ ∞

−∞
Gx0(x)h(x0) dx0. (3.60)

y is the PI because

Lx(y) =
∫ ∞

−∞
LxGx0(x)h(x0) dx0

=
∫
δ(x− x0)h(x0) dx0

= h(x).
Hence, once you have the Green’s function Gx0 you can easily find solutions for
various h.

3.12.3 Finding Gx0 Let y = v1(x) and y = v2(x) be two linearly independent solu-
tions of Lxy = 0 – i.e. let the CF of our equation be y = Av1(x) +Bv2(x). At x �= x0,
LxGx0 = 0, so Gx0 = A(x0)v1(x) +B(x0)v2(x). But in general we will have different
expressions for Gx0 in terms of the vi for x < x0 and x > x0:

Gx0 =
{
A−(x0)v1(x) +B−(x0)v2(x) x < x0

A+(x0)v1(x) +B+(x0)v2(x) x > x0.
(3.61)

We need to choose the four functions A±(x0) and B±(x0). We do this by:
(i) obligingGx0 to satisfy boundary conditions at x = xmin < x0 and x = xmax > x0

(e.g. lim
x→±∞Gx0 = 0);

(ii) ensuring LxGx0 = δ(x− x0).
We deal with (i) by defining u± ≡ P±v1 +Q±v2 with P±, Q± chosen s.t. u− satisfies
given boundary condition at x = xmin and u+ satisfies condition at xmax. Then

Gx0(x) =
{
C−(x0)u−(x) x < x0,
C+(x0)u+(x) x > x0.

(3.62)

We get C± by integrating the differential equation from x0 − ε to x0 + ε:

1 =
∫ x0+ε

x0−ε
δ(x− x0) dx =

∫ x0+ε

x0−ε
LxGx0 dx

=
∫ x0+ε

x0−ε

(
d2Gx0

dx2
+ a1(x)

dGx0

dx
+ a0(x)Gx0 (x)

)
dx

=
[
dGx0

dx
+ a1(x0)Gx0(x)

]x0+ε

x0−ε
+
∫ x0+ε

x0−ε

(
a0 − da1

dx

)
Gx0(x) dx.

(3.63)

We assume that Gx0(x) is finite and continuous at x0, so the second term in [. . .]
vanishes and the remaining integral vanishes as ε → 0. Then we have two equations
for C±:

1 = C+(x0)
du+

dx

∣∣∣∣
x0

− C−(x0)
du−
dx

∣∣∣∣
x0

0 = C+(x0)u+(x0) −C−(x0)u−(x0).
(3.64)
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Solving for C± we obtain

C±(x0) =
u∓
Δ

∣∣∣∣
x0

where Δ(x0) ≡
(

du+

dx
u− − u+

du−
dx

)
x0

. (3.65)

Substing these solutions back into (3.62) we have finally

Gx0(x) =

⎧⎪⎪⎨⎪⎪⎩
u+(x0)u−(x)

Δ(x0)
x < x0

u−(x0)u+(x)
Δ(x0)

x > x0.
(3.66)

Example 3.27
Solve

Lx =
d2y

dx2
− k2y = h(x) subject to lim

x→±∞y = 0.

The required complementary functions are u− = ekx, u+ = e−kx, so

Δ(x0) = −ke−kxekx − e−kxkekx = −2k.

Hence

Gx0(x) = − 1
2k

{
e−k(x0−x) x < x0

ek(x0−x) x > x0

= − 1
2k

e−k|x0−x|

and

y(x) = − 1
2k

[
e−kx

∫ x

−∞
ekx0h(x0) dx0 + ekx

∫ ∞

x

e−kx0h(x0)
]

dx0.

Suppose h(x) = cosx = �e(eix). Then

−2ky(x) = �e

(
e−kx

[
ex0(i+k)

i+ k

]x
−∞

+ ekx
[
ex0(i−k)

i − k

]∞
x

)

So
y = − cosx

1 + k2

as expected.

3.13 Appendix
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3.13.1 Arbitrary constants & general solutions
How many initial conditions do we need to specify to pick out a unique solution

of L(f) = 0? Arrange Lf ≡ anf
(n) + an−1f

(n−1) + · · · + a0 = 0 as

f(n)(x) = −
(
an−1

an
f(n−1)(x) + · · · + a0

an
f

)
. (3.67)

If we differentiate both sides of this equation with respect to x, we obtain an expression
for f(n+1)(x) in terms of f(n)(x) and lower derivatives. With the help of (3.67) we can
eliminate f(n)(x) from this new equation, and thus obtain an expression for f(n+1)(x)
in terms of f(x) and derivatives up to f(n−1)(x). By differentiating both sides of our
new equation and again using (3.67) to eliminate f(n) from the resulting equation, we
can obtain an expression for f(n+2)(x) in terms of f(x) and derivatives up to f(n−1)(x).
Repeating this procedure a sufficient number of times we can obtain an expression for
any derivative of f in terms of f(x) and derivatives up to f(n−1). Consequently, if the
values of these n functions are given at any point x0 we can evaluate the Taylor series

f(x) = f(x0) + (x− x0)f ′(x0) + 1
2 (x− x0)2f ′′(x0) + · · · (3.68)

for any value of x that lies near enough to x0 for the series to converge. Consequently,
the functional form of f(x) is determined by the original nth order differential equation
and the n initial conditions f(x0), . . . , f(n−1)(x0). Said another way, to pick out a
unique solution to an nth order equation, we need n initial conditions.

The general solution of a differential equation is one that contains a sufficient
supply of arbitrary constants to allow it to become any solution of the equation if
these constants are assigned appropriate values. We have seen that once the n numbers
f(r)(x0) for r = 0, . . . , n − 1 have been specified, the solution to the linear nth-order
equation Lf = 0 is uniquely determined. This fact suggests that the general solution
of Lf = 0 should include n arbitrary constants, one for each derivative. This is true,
although the constants don’t have to be the values of individual derivatives; all that
is required is that appropriate choices of the constants will cause the rth derivative of
the general solution to adopt any specified value.

Given the general solution we can construct n particular solutions f1, . . . , fn as
follows: let f1 be the solution in which the first arbitrary constant, k1, is unity and
the others zero, f2 be the solution in which the second constant, k2, is unity and the
other zero, etc. It is easy to see that the general solution is

f(x) =
n∑
r=1

krfr(x). (3.69)

That is, the general solution is a linear combination of n particular solutions, that
is, solutions with no arbitrary constant.
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3.13.2 Integrating factors for second order differential equations
Now suppose we have a solution u:

d2u

dx2
+ p(x)

du
dx

+ q(x)u = 0, (3.70)

Then write f = uv and u′ ≡ du
dx

etc. so that

f ′ = u′v + uv′ ; f ′′ = u′′v + 2u′v′ + uv′′. (3.71)

Substituting these results into (3.14) we obtain

h = f ′′ + pf ′ + qf

= u′′v + 2u′v′ + uv′′ + pu′v + puv′ + quv

= v(u′′ + pu′ + qu) + uv′′ + 2u′v′ + puv′

= 0 + uv′′ + 2u′v′ + puv′.

(3.72)

Now define w ≡ v′ and find

uw′ + (2u′ + pu)w = h ⇒

⎧⎪⎨⎪⎩
IF = exp

[∫ (
2
u′

u
+ p
)

dx
]

= u2e
∫
p dx.

(3.73)

Finally can integrate

v′(x) = w(x) = u−2(x)e−
∫ x

pdx
∫ x

x0

e
∫ x′

pdx
hu dx′. (3.74)

Thus if can find one solution, u, of any second-order linear equation, we can find the
general solution f(x) = αu(x) + u(x)v(x, x0).


