FIRST YEAR MATHS FOR PHYSICS STUDENTS

NORMAL MODES AND WAVES

Hilary Term 2009
Prof. G. G. Ross

Question Sheet 2: Waves 1

1. At time $t=0$, the displacement of an infinitely long string is defined as:

$$
y(x, t=0)=\sin \frac{\pi x}{a} \text { in the range }-a \leq x \leq a
$$

and $\quad y(x, t=0)=0$ otherwise.

The string is initially at rest.
Using d'Alembert's solution, and assuming that waves may move along the string with speed c, sketch the displacement of the string at $t=0, t=a / 2 c$, and t $=a / c$.
2.

Two transverse waves are on the same piece of string. The first has displacement y non-zero only for $k x+\omega t$ between π and 2π, when it is equal to $A \sin (k x+\omega t)$. The second has $y=A \sin (k x-\omega t)$ for $k x-\omega t$ between -2π and $-\pi$, and is zero otherwise. When $t=0$, the displacement is as shown in the figure. Calculate the energy of the two waves.

What is the displacement of the string at $t=3 \pi / 2 \omega$? Calculate the energy at this time.
3.(a) What is the difference between a moving wave and a stationary wave?
(b) Convince yourself that

$$
y_{1}=A \sin (k x-\omega t)
$$

corresponds to a moving wave. Which way does it move? What are the amplitude, wavelength, frequency, period and velocity of the wave?
(c) Show that y_{1} satisfies the wave equation

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} y}{\partial t^{2}}
$$

provided that ω and k are suitably related.
(d) Write down a wave y_{2} of equal amplitude travelling in the opposite direction. Show that $y_{1}+y_{2}$ can be written in the form

$$
y_{1}+y_{2}=f(x) g(t)
$$

where $f(x)$ is a function of x only, and $g(t)$ is a function just of t. Convince yourself that the combination of two moving waves is a stationary wave. By determining $f(x)$ and $g(t)$ explicitly, determine the wavelength and frequency of $y_{1}+y_{2}$. Comment on the velocity of the waves.
4. What is meant by (a) a dispersive medium, and (b) phase velocity, v? Explain the relevance of group velocity g for the transmission of signals in a dispersive medium. Justify the equation

$$
\begin{equation*}
g=\frac{d \omega}{d k} \tag{1}
\end{equation*}
$$

Show that alternative expressions for g are

$$
\begin{gather*}
g=\mathrm{v}+k \frac{d v}{d k} \tag{2}\\
g=\mathrm{v}-\lambda \frac{d v}{d \lambda} \tag{3}\\
g=\frac{c}{\mu}\left(1+\frac{\lambda}{\mu} \frac{d \mu}{d \lambda}\right) \tag{4}
\end{gather*}
$$

where μ is the refractive index for waves of wavelength λ and wavenumber k (in the medium).
Use Eq. 3 to show that

$$
g=\mathrm{v}\left[1-1 /\left(1+\frac{\mathrm{v}}{\lambda^{\prime}} \frac{d \lambda^{\prime}}{d \mathrm{v}}\right)\right]
$$

where λ^{\prime} is the wavelength in vacuum.
5. In quantum mechanics, a particle of momentum p and energy E has associated with it a wave of wavelength λ and frequency f given by

$$
\lambda=h / p \text { and } f=E / h
$$

where h is Planck's constant. Find the phase and group velocities of these waves given that

$$
p=m_{0} \mathrm{v} / \sqrt{1-\mathrm{v}^{2} / c^{2}} \text { and } E=m_{0} c^{2} / \sqrt{1-\mathrm{v}^{2} / c^{2}},
$$

(The particle's rest mass is m_{0}, and its speed is v . c is the speed of light) Comment on your answers.
6. Show that the kinetic energy U and the potential energy V for a length $\lambda=2 \pi / k$ of a transverse wave on a string of linear density ρ and at tension T are given by

$$
\begin{aligned}
U & =\int_{0}^{\lambda} \frac{1}{2} \rho\left(\frac{\partial y}{\partial t}\right)^{2} d x \\
\text { and } \quad V & =\int_{0}^{\lambda} \frac{1}{2} T\left(\frac{\partial y}{\partial x}\right)^{2} d x
\end{aligned}
$$

Evaluate these for the wave

$$
y=A \cos (k x+\omega t+\phi)
$$

and show that $U=V$.

