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NORMAL MODES, WAVE MOTION AND THE WAVE EQUATION 
 

Professor G.G.Ross 
 

Oxford University  
Hilary Term 2009 

 
This course of twelve lectures covers material for the paper CP4: Differential 
Equations, Waves and Optics of the Preliminary Examination in Physics, and 
Moderations in Physics and Philosophy.  Textbooks covering aspects of this course 
include “Waves”, by C.A.Coulson & A. Jeffrey, Longman and “Vibrations & Waves” 
by A.P.French, MIT Introductory Physics Series. I am grateful to Dr. P G Irwin for 
providing his notes for this course; they have been very useful in preparing these 
lecture notes. 
 
 
Part 1    NORMAL MODES 
 
 
1 Introduction  
 
 
Many physical systems require more than one variable to quantify their configuration; 
for example a circuit may have two connected current loops, so one needs to know 
what current is flowing in each loop at each moment. Another example is a set of N 
coupled pendula each of which is a one-dimensional (1-D) oscillator. A set of 
differential equations– one for each variable – will determine the dynamics of such a 
system.  
 
For a system of N coupled 1-D oscillators there exist N “normal modes” in which all 
oscillators move with the same frequency and thus have fixed amplitude ratios (if 
each oscillator is allowed to move in α-D, then αN normal modes exist). The normal 
mode is for whole system. Even though uncoupled angular frequencies of the 
oscillators are not the same, the effect of coupling is that all bodies can move with the 
same frequency. If the initial state of the system corresponds to motion in a normal 
mode then the oscillations continue in the normal mode. However in general the 
motion is described by a linear combination of all the normal modes; since the 
differential equations are linear such a linear combination is also a solution to the 
coupled linear equations. 
 
The existence and nature of normal modes is best illustrated by some examples so we 
first turn to the solution of coupled linear equations. 
 
2 Solution of coupled linear differential equations with constant coefficients. 
 
Consider a set of differential equations that are linear and have constant coefficients.  
The procedure for solving them is a minor extension of the procedure for solving a 
single linear differential equation with constant coefficients. The steps are: 
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1. Arrange the equations so that terms on the left are all proportional to an unknown 
variable, and already known terms are on the right. 
 
2. Find the general solution of the equations that are obtained by setting the right 
sides to zero. The result of this operation is the Complementary function (CF). For 
oscillatory solutions the CF is found by replacing the unknown variables by multiples 
of ei! t  (if t is the independent variable) and solving the resulting algebraic equations. 
 
3. Find a particular integral by putting in a trial solution for each term – polynomial, 
exponential, etc. – on the right hand side. 
 
 
3 Coupled Pendula 
 
The first example of coupled linear differential equations is provided by two coupled 
pendula. Consider two massless rods of length l, which have bobs of mass m attached 
to the end, which are themselves connected by a spring.  

 
Assumptions: 

1) Assume that spring obeys Hooke’s law and thus that the restoring force varies 
linearly with extension, i.e. ( )F k y x= !  

2) Assume the displacements from equilibrium positions are small such that the 
restoring force due to gravity for each pendulum is approximately given by 

  
mg tan! = mg

x

l
 and acts along the line of masses. The equations of motion 

are then: 
 

   
m!!x = !mgx / l + k y ! x( )   

  
   
m!!y = !mgy / l ! k y ! x( )  (3.1) 

l l 

θy θx 

F F 

x y 
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3.1 Matrix method of solution 
 
We start with the general method of solution that applies to all coupled linear 
differential equations. As we will discuss there may be more direct methods in special 
cases. We first implement step 1 to write the equations of motion for the coupled 
pendula in a standard form 
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where the unknown variables are to the left. In this case there are no driving terms so 
the right hand side is zero. These equations may be written as a matrix equation 
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or 
  Ax = 0  (3.4) 

where x is the column vector 
x

y

! "
# $
% &

 and A the square symmetric matrix in Eq.(3.3). 

Since the RHS is zero we are only interested in finding the CF. We look for normal 
mode solutions where all elements oscillate with the same frequency. Particularly for 
cases in which both first and second order derivatives are present (as is the case for 
damped oscillators discussed below) it is best to solve the associated complex 
equation. Writing  
 

   
x = Re Y ! Xe

i" t( )  (3.5) 
where 
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 (3.6) 

and substituting into Eq. 13 we find, since the differential operators are real, the 
associated complex equation is given by 
   AY = 0  (3.7) 
where  

 

   

A =

! 2 "
g

l
+

k

m

#
$%

&
'(

k

m

k

m
! 2 "

g

l
+

k

m

#
$%

&
'(

#

$

%
%
%
%

&

'

(
(
(
(

 (3.8) 

or, equivalently, dividing by the factor ei! t  
   AX = 0  (3.9) 
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The solutions of Eq.(3.9) are either X = 0 , which is not very interesting, or the 
determinant of the matrix Amust be equal to zero. Hence 

 

  

! 2 "
g

l
+

k

m

#
$%

&
'(

k

m

k

m
! 2 "

g

l
+

k

m

#
$%

&
'(

#

$

%
%
%
%

&

'

(
(
(
(

= 0  (3.10) 

leading to the “eigenvalue equation”: 
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 (3.11) 

From this we see that there are two normal mode frequencies, !
1,2

, corresponding to 
the two independent solutions of the coupled differential equations, given by 

 
  

!
1
= g / l

!
2
= g / l + 2k / m

 (3.12)  

(the ±  ambiguity associated with the square root gives rise to the same sinusoidal 
solutions and so is ignored here). To complete the solution we need to find the normal 
mode amplitudes. These are found by solving Eq.(3.9) for X , substituting each of the 
normal mode frequencies in turn. For ! =!

1
 we have 
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This determines the ratio of X
1
 to Y

1
 giving 
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with A
1
, !

1
 the real amplitude and phase. Similarly for ! =!

2
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giving  
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Finally, since x = Re Xei! t( )  we have the two “normal mode” solutions 
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and hence, since the differential equations are linear, we can use the principle of 
superposition to write the general solution as a linear combination of the two normal 
mode solutions 
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The advantage of the matrix method is its general applicability, and the ease with 
which it may be applied to systems with more than two normal modes. The advantage 
of using the complex exponential is only evident if there is a mixture of single and 
double derivatives as in the case of a damped pendulum discussed below. In the 
undamped case just discussed it would be equally simple to start with a normal mode 
trial solution proportional to cos !t + "( ) . 
 
 
 
3.2 Alternative methods of solution: Normal coordinates or Decoupling 
 
The equations of motion for the coupled pendula are given by Eq.(3.1), rewritten here 
for convenience   

  
   

m!!x = !mgx / l + k y ! x( )
m!!y = !mgy / l ! k y ! x( )

 (3.19) 

For simple coupled oscillator systems it is often possible to find the normal modes 
directly by taking obvious linear combinations of the equations of motion to obtain 
decoupled differential equations. These may then be independently solved for a linear 
combination of the position variables, in this case x and y. If this can be done it 
considerable simplifies the solution. The coupled pendula just discussed provides a 
simple example of this. If we add Eqs.(3.19) we find: 

 
  
m !!x + !!y( ) = !

mg

l
x + y( )  (3.20) 

or 

 
   
!!q

1
= !

g

l
q

1
 (3.21) 

where q1 is a normal coordinate here equal to 
  
q

1
= x + y( ) / 2  (The normalisation 

factor 1 / 2  is chosen to give a standard form for the kinetic energy when expressed 
in terms of the normal modes – see Eq.(3.41)).  
 
Eq.(3.21) describes simple harmonic motion which may be trivially solved to give: 
 

  
q

1
= 2A

1
cos !

1
t + "

1
( )  (3.22) 

where
  
!

1
= g / l is the first normal frequency found earlier and we have chosen the 

integration constants to agree with those found using the matrix method.  
Similarly, if we subtract Eqs.(3.19) we find: 

 
   
m !!x ! !!y( ) = !

mg

l
x ! y( ) ! 2k x ! y( )  (3.23) 

or 
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where q2 is another normal coordinate, equal to 
  
q

1
= x ! y( ) / 2 . Eq.(3.24) also 

describes simple harmonic motion and thus 
 

  
q

2
= 2A

2
cos !

2
t + "

2
( )  (3.25) 
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where

  
!

2
= g / l + 2k / m is the second normal frequency found earlier.  

 
To extract the original position variables x and y we note that 

  
x = q

1
+ q

2
( ) / 2  and 

  
y = q

1
! q

2
( ) / 2  and hence 
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 (3.26) 

 
which is identical to the general solutions Eq.(3.18) derived by the matrix method. 
From this is easy to identify the motion corresponding to the normal modes. For the 
case only the first normal mode is excited A

2
= 0 and the motion is shown in the 

figure below showing the two masses move together. 

 
    Normal mode 1 
 
The second normal mode corresponds to the case A

1
= 0 and for it the masses  move 

in opposite directions. 
 

 
    Normal Mode 2 
 
This method of solution can lead to quick solutions for the normal frequencies if the 
suitable linear combination of parameters can be spotted. For simple cases like this it 
is easy but not for more complicated systems. This technique is also known as 
decoupling. 
 
3.3 Initial conditions 
 
The values of the integration constants A

i
, !

i
 are determined from the initial 

conditions of the system. As is shown in the following examples this can lead to a 
single normal mode being excited or to a combination of normal modes. 
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Example (a) – Normal Mode Excitation 
 
Suppose that at t = 0, x = a, y = a and the masses are initially at rest. Equating the 
initial positions to Eqs.(3.26) implies: 

 
  

x 0( ) = A
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1
+ A

2
cos!

2
= a

y 0( ) = A
1
cos!

1
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 (3.27) 

which  implies A
1
cos!

1
= a, A

2
cos!

2
= 0 . Equating the initial velocities to zero gives 
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giving A
1
= a, A

2
= 0, !

1
= 0 . Hence the solution for t > 0 is  
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y = acos!
1
t

 (3.29) 

and thus, c.f. Eq.(3.26), we see that only the first normal mode is excited, which is to 
be expected given the initial displacements. In addition, once in this normal mode, the 
system will remain in it indefinitely. 
 
Example (b) – Normal Mode Excitation 
 
Suppose that at t = 0, x = y = 0, and the masses are given initial velocities 
   !x = !v ,

   
!y = v . This implies 
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 (3.30) 

giving A
1
= 0, A

2
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"

#
2

, $
2
= 0 and thus the subsequent motion is: 
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2
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2
t
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v
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2
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2
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 (3.31) 

Thus, c.f. Eq.(3.26), we see that these initial conditions excite the second normal 
mode only, in which the system will remain. 
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The motion in these two normal modes may also be summarised by the following 
figure: 

 
where here the coupling is such that the frequency of the 2nd mode is higher than that 
of the first. 
 
Example c – Non-Normal Behaviour – Beats 
 
Suppose that at t = 0, x = a, y = 0 and the masses are initially at rest. This requires 
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giving A
1
= A
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a

2
, !
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2
= 0.  Hence the solution for t > 0 is  
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and thus both normal modes are excited. The solution for both x and y is then 
determined by the beating of the two terms with normal frequencies ω1 and ω2.  
 
3.4 Beats  
 
Eqs.(3.33) can be re-written using standard trigonometrical identities as: 
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where 1 2

2

! !
!

+
= and 

1 2
! ! !" = # . The form of x and y is shown in the figures 

below for the case !" <<" . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
One may see that the rapidly oscillating wave with angular frequency !  is contained 
in a slowly oscillating envelope with angular frequency !" / 2.  The fluctuating 
amplitude is known as “beats”. Moreover one may see that as the amplitude envelope 
passes through zero for x the amplitude envelope for y reaches a maximum and vice 
versa, corresponding to a transfer of energy between the two pendula. Note also that 
one complete period of the envelope equals two beats. 
 
 
 3.5 Energy of Motion 
 
Decoupling, to express the result in terms of normal modes, is also instructive when 
the energy of the system is considered.  Consider first the potential energy, V (x, y) , of 
the coupled oscillators. Consider the forces acting on particle 1 which, c.f. Eq.(3.19), 
are given by 

  
!mgx / l + k y ! x( ) . This force may be written in terms of a partial 

derivative with respect to  x of a potential V(x,y): 

 
  
!mgx / l + k y ! x( ) = !

"V

"x
 (3.35) 

Integrating this we find: 
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2
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! kxy + f y( )  (3.36) 

where f is an unknown function of y. 
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The force, 

  
!mgy / l ! k y ! x( ) , acting on particle 2 may be similarly be obtained 

from the potential energy giving 
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dy
 (3.37) 

where we have used Eq.(3.36) to compute the partial derivative. Integrating this 
equation determines f y( )  and inserted in Eq.(3.36) gives the total kinetic energy of 
the system (up to an undetermined constant) 
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Consider now the kinetic energy K. This is given simply by: 
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While the expression for K is straightforward, that for V is rather more complex. 
However if we substitute for the normal coordinates: 
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where ω1 and ω2 are the normal mode angular frequencies. Similarly K may be 
rewritten as: 
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and the total energy is then: 
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One may see from Eqs.(3.40),(3.41) and (3.42) that the energies separate into the 
individual energies of two decoupled simple harmonic oscillators corresponding to the 
motion of the two normal modes.  The is an example of Parseval’s theorem which 
states that the total energy of the system is the sum of the energies of the normal 
modes. 
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4 Coupled driven linear differential equations  
 
We now consider examples in which there is a driving term forcing the motion, 
following the steps listed above when obtaining the solution. The examples appear in 
Section 3.8 of my lecture notes on Complex Numbers and Ordinary Differential 
Equations. For completeness I reproduce them here. 
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5  Non-Identical Pendula, damped and with forced oscillations 
 
Here we return to the coupled oscillator system to demonstrate how the matrix method 
provides a solution to the general case when the decoupling method is not 
straightforward to implement.  
 
Consider the non-identical coupled oscillator system below with a force F cos!t  
acting on particle 1. Both bobs are also subject to a frictional force equal to γ times 
their velocity.  
 

 
The equations of motion are: 
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This is equivalent to the matrix equation 
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The Complementary Function 

 
The CF is found solving the equation with no driving term on the RHS. We look for 

a normal mode solution of the form 
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Substituting this in the LHS of the matrix equation leads to the associated complex 
matrix equation  
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The associated eigenvalue equation is  
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Solving this equation will give the normal mode frequencies. Finally substituting 
these frequencies in turn in Eq.(5.4) determines the normal modes in the usual 
manner. For the case of arbitrary masses and pendula lengths this matrix method is the 
optimal one to find the normal frequencies as it is not possible simply to identify the 
normal co-ordinates and apply the decoupling method.  
 
The Particular Integral  
 
To find the particular integral we try  
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Substituting this in the matrix equation the associated complex equation is  
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where the factor ei! t has been divided out of both sides. The solution to this equation 
is given by  
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Finally the PI is given by 
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This illustrates how the matrix method may be used to obtain the solution to the 
general driven coupled pendula system. However evaluating the solution is 
algebraically complicated so to illustrate the final steps we consider a relatively 
simple case. 
 
5.1 The case m

1
= m

2
= m, l

1
= l

2
= l  - Matrix method 

 
CF 
 
In this case the eigenvalue equation, Eq.(5.5), becomes  
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with solutions  
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"
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 (5.12) 

where !
1,2

 are the normal frequencies for the case with no damping, c.f. Eq.(3.12). 

For the case ! =!1 , corresponding to the first factor in Eq.(5.11) vanishing, 
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2

+ i
#
m
"1 +

g

l

$
%&

'
()
= 0 the eigenvector equation becomes  
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implying  
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 (5.14) 

Similarly one readily finds the case ! =! 2 has its eigenvalues given by 
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 (5.15) 

Putting this all together we have the complementary function  
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PI 
 
For this choice of masses and lengths the matrix given in Eq.(5.9) is now  
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with inverse  
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where  
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It is convenient to rewrite this in the form 
 Det M = B

1
e
! i"1 .B

2
e
! i"2  (5.20) 

where 
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Then M!1  may be rewritten as 
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so finally, using Eq.(5.10) we have 
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5.2 The case m
1
= m

2
= m, l

1
= l

2
= l  - Decoupling method 

 
For this choice of masses and lengths the decoupling method provides another way of 
identifying the normal modes and decoupling the differential equations for the driven 
oscillators. It is instructive to compare this to the matrix method. The coupled 
differential equations are  
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 (5.24) 

 
The first normal mode 
 
Adding the equations gives  
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CF   
 
The auxiliary equation is  
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with eigenvalues  
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as we found using the matrix method. The CF is then 
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where q1 = 1

2
(x + y) . 

 
PI  
 
To find the P.I. put 

  
q

1
= Re C

1
exp i!t( )"

#
$
%  then, c.f. Eq.(5.21): 
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and thus 
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 Hence the PI for the normal coordinate q1 is given by: 
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The second normal mode 
 
Subtracting the equations of motion (Eq.(5.24)) gives: 
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where q2 = 1

2
(x ! y)  

CF 
 
In a similar manner we readily find that the complementary function is given by  
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PI 
 
To find the P.I. put 
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and thus 
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Hence the normal coordinate q2 is given by: 
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It is easy to solve for x and y giving 
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 (5.39) 

in agreement with the result obtained by the matrix method, Eqs.(5.16) and (5.23) 
. 
 
 
 
5.3 The case m

1
= m

2
= m, l

1
! l

2
, no damping, no driving force. 

 
The final example we shall consider is the case that the masses are equal and there is 
no driving force but the pendula lengths differ. Fron Eq.(5.5) the eigenvalue equation 
is 
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Putting: 
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gives 
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Substituting !
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in Eq.(5.4) determines the eigenvectors X =
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 up to an overall 

constant: 
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N.B. ( )0 0 1

/x y for mode 1 and ( )0 0 2
/x y for mode 2 are related by: 
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The full solution is then given by  
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which may be solved to give 
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This is a little more difficult to simplify but it can be shown that 
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From this one sees that x  varies between a and 
2

2

1

1

r
a

r

! "#
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 and y  varies between 0 

and 
2

2

1

r
a

r

! "
# $

+% &
. Hence, unlike the case for equal length pendula, there is an 

incomplete transfer of energy. This is clear from the plot of 

x t( )  and y t( ) :  
 

Figure showing beats of non-identical pendula. Note the incomplete energy 
transfer. 
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5.4 Diagrammatic Representation of Normal Modes  
 
The normal mode motion is specified by  the ratio x0/y0.  We can represent this by a 
unit-length vector v = x

0
i + y

0
j( ) / x
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2
+ y

0

2 . For the case of two normal modes there 
are two vectors. 
 
Consider case of non-identical pendula discussed in Section 5.3. In various limits 
these eigenvalues defining the normal modes are given by  
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The corresponding graphical representation is given by  
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