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Abstract

We considerthe
vorticity by temporally fluctuating large scaflows in two
dimensions. In analyzing this problem, wmploy modern

mixing of passive tracers and

developments stemming from properties of Hamiltonian
chaos inthe particle trajectories; these developments
generally comeunder the heading "chaotic advection™ or
"lagrangian turbulence."” A review dlfie salient properties
of this kind of mixing, andhe mathematicased to analyze

it, is presented in the context passivetracer mixing by a
vacillating barotropicRossby wave. We thetake up the
characterization of subtler aspects of the mixing. $#hiswn

the chaotic advectioproduces very nonlocahixing which
cannot be represented by edtiffusivity. Also, the power
spectrum othe tracer field idound to be K at shortwaves
—rprecisely ador mixing by homogeneousisotropic two
dimensional turbulence,— even thoutjte physics of the
present case is vergifferent. We have produced two
independent arguments accounting for this behavior.

We then examine integrations of thenforced
barotropic vorticity equation with initial conditions chosen to
give a large scale streamline geometry similar that
analyzed in the passive case. It is found that vorticity mixing

proceeds along lines similar to passive tranexing. Broad
regions of homogenizedorticity ultimately surround the
separatrices of the large scale streamlpegtern, with
vorticity gradients nited to nonchaoticegions (regions of
tori) in the corresponding passive problem.

Vorticity in the chaotic zondakes theform of an
arrangement o$trands which become progressivéher in
scale angrogressively more densepacked; thigprocess
transfers enstrophy temall scales. Although theenstrophy
cascade is entirely controlled by the large scale wave, the
shortwave enstrophy spectrumltimately takes on the
classical K form. If oneaccepts that thenstrophycascade
is indeed mediated by chaotidvection, this ishe expected
behavior. Theextremeform of nonlocality (in wavenumber
space) manifest in thiexamplecasts some doubt on the
traditional picture ofenstrophycascade in thétmosphere,
which is based on homogeneous 2D turbulgheery. We
advance the conjecture that thesansfersare in large
measure attributable to largeale, low frequencyplanetary
waves.

Upscale energy transfeemplifying the large scale
wave do indeed occur ime course ofthe above-described
process. Howeverthe energy trasfer is complete long
before vorticity mixing has gotten very far, and therefore has



little to do with chaotic advection. In this sentfe vorticity
involved in the enstrophy cascade is "fossil vorticity," which
has already given up its energy to the large scale.

We conclude with some speculations concerning
statistical mechanics d¥vo dimensionaflow, prompted by
our finding that flows withidentical initial energy and
enstrophycan culminate in very different finaltates. We
also outline prospects for further applications ohaotic
mixing in atmospheric problems.
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1. Introduction

Hoskins, et al. (1985have made an eloguent case
for the analysis of atmospheric amateanic dynamics in
terms of potential vorticity evolution on isentro@arfaces.
These analyse®veal the hidden complexity that cannot be
detected in streamfunction or geopotential hefgHts. At
the elemental level, themoothness athe streamfunction is
simply a consequence of its beinglated to potential
vorticity by an inversdaplacianoperator. Thigemarkdoes
not go farenough, though, as it ihe streamfunctiorthat
governsthe vorticity advection; hence itsmoothness has
important dynamicakconsequences. Indeetipear wave
theory (whichgenerally involvesmooth fields) has proved
a very productive approach to a range of atmospheric
phenomena, and it is not at figlance easy to reconcile this
evident success withhe spatial complexity obbserved
potential vorticity fields.

Recent advances in tharea known as "chaotic
advection" or "lagrangian turbulence" providesway of
putting the wave/turbulencggsaw puzzle backtogether.
This work has demonstrated that organileede scale (even
deterministic) flowpatterns can produce spatially complex
tracer patternswhich lead to effective mixing; italso

provides a powerful apparatus fdnaracterizing the mixing
(Aref 1984, Chienet al 1986,Khakaret al. 1986, Ottino et
al., 1988, and Wiggins 1988, Ottino 198%m-Kedaret al
1990, inter alid). The theory predicts enhanced mixing
whenever a streamfunction exhibiting a clossteamline
region bounded by a separatrix geamline terminating in
stagnation points) is subjected to temporal fluctuations. This
isolated eddy
embedded in a backgrourairrent, and is ubiquitous in
Most of the
progress haseen for passivetracer advection intime-

geometry occurs whenevdhere is an

large scale atmospheric amdeanicflows.

periodic flows, and it is not a priorclear whetheany of
these results carry over to mixing aftive tracers (like
potential vorticity or potential temperature) in more complex
flows. Exploring this connection ithe central concern of
this paper.

We approach this problem by analyzing passive
tracer mixing by vacillating barotropiRossby waves, and
then examining integrations of the full barotropic vorticity
equationfor the characteristic signature ctfiaotic mixing in
the vorticity fields. This example illustrates the peaceful
coexistence between an organized large scale wave and
complex vorticity evolution leading to anstrophy cascade.
Along theway wederive some novel results dme passive



tracer problem, particularly concerninguse of two-particle
correlation functions tocharacterize themixing, and the
relation of thesdunctions to powerspectra of theracer.

Chaotic Advection

homogeneity andsotropy. Certainly, this problem has a
great deal of intrinsidntellectual appeal, but lurking in the
background of much of this work ike hope that universal

These results have clear implications for the representation of homogeneous behavior applies at scales far removed from

such asozone
iswith the

mixing
evolution.

in chemical tracer problems,
Our mainconcern, though,
consequences for potential vorticity mixing.

The key result is thatchaotic advection theory
provides considerable insight as to whpogential vorticity
will homogenize, and wherstrong gradientgan survive.
Potential vorticity homogenization is central to the
understanding of a variety of natuggthenomenaincluding
the stratospheric polar vortex(Mcintyre & Palmer83)
Rossbywave critical level reflection(Killworth & Mcintyre
1985), thermocline theor{Rhines and Young 1982), and
Jupiter's Great Red Spot, where homogenization is
commonly invoked tasuppress radi@in of Rossby waves
(Marcus 1988).Our results demonstrate that eddy viscosity
need not be stipulated to account for homogenization.

The Rossbywave problem also leads usaturally
into the consideration of theroperties of two-dimensional
turbulence in the presence of large scaleomogeneity.
Most 2D turbulencestudies, bothheoreticaland numerical,

have been carried ouunder circumstances favoring

that of the large scalenhomogeneity. Because of the
nonlocality in wavenumber space of thestrophycascading
subrange (Kraichnan, 1971), this is a dubious proposition.
We shall see that an energetic large sealge controls the
enstrophy cascade down

However, owing tocertainuniversal properties othaotic

to arbitrarily small scales.

advection, a classical-k enstrophy spectrum nevertheless
emerges. Giverthe prominence of planetawaves in the
Earth's atmosphere, it ikely that the chaotic advection
modelprovides a biger metaphofor the enstrophycascade
than isotropic, homogeneous 2D turbulence.

We alsodiscussthe energytransfers associated with
the distortion of small scale eddies by the planeteaye.
The large scale wave effectivedgavengeshe energy of the
small eddies, but it will be seen that these transfers occur at a
very early stage ofthe game. The eddies give upeir
energy to the large scale long before the vorticity mixing has
gotten underway. Hence the chaotic mixing properties are of
little relevance to the energy transfer.
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The mathematical statement of the problerpadsive
tracer advection by a supesition of Rossby waves is
given in 82, along with a review of its basic behavior. Some
new quantitative characterizations of timeixing, and their
connection with powerspectra of the concentration
distribution,are given in83.  Fully nonlinear simulations
of the barotropic vorticity equations establishing a
connection of these results with potential vorticity mixing are
given in84. In 85 we discusthe upscale energyansfers
associated with mixing of small scaleorticity.  Our
principal conclusions are discussed in @fere we also set
out some guideposts for future geophysical applications of
chaotic mixing.

2. Passive tracer advection: the basic behavior

The whole chaotic advection enterprisgems from
the following simple observation. If ¢(x,y,t) is the
streamfunctiorfor atime-dependent incompressikflew in
two dimensions, then the equations for the position (X,Y) of
a marker particle are

dX dy
I = «9pr(X,Y,t) o =0 WXY, ) (1)
Since Yis a nonlinear function of X and Y, this is a

nonlinear system. Moreover, ifthe time dependence is
periodic, then this is @hree degree ofreedom nonlinear

Chaotic Advection

system,since one must specify X,Y artbe phase of the
oscillation to determine the future course of the system. This
is the minimumnumber of degrees of freedom necessary to
support chaos.Hence the trajectories of passive tracer
particle can be chaotic even in spatially simihbsv fields;

A further
attractive feature ofl) is that it is a Hamiltonian ystem,
with canonical coordinates X and Y and Hamiltonigdin

this has profoundimplications for mixing.

Hence the full arsenal of techniquder dealing with
Hamiltonian chaos developed over a century or more of
research is available for one's employment in the
investigation of such systems. The work Axief (1984)
drew attention tothis opportunity, and irconjunction with
the appearance of the textbook bidolmes and
Guckenheime(1983) hascertainly stimulated much of the
current progress inthe subject. Certain antecedents
concerning mixing by spatially organizédws can also be
found inthe much earlier paper by Weland&855), which
was certainly ahead of its time, being amdmgfirst papers
to employ fractal geometry in the investigation of fluid
phenomena.

In this paper, wewill be concerned withparticle
advection by the velocity field of a superposition of two
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Rossby waves onthe barotropic (-plane. The
streamfunction is
W= A sin(ky(x-cat))sin(lry) + € sin(kx(x-cat))sin(lby)(2)

wherethe phase speedare ¢=—f/(kj2 + [j2). We adopt
units such thatql = 1 andp=1; further, in all results
presented belowik1 and k and b are integers, whence the
flow is confined to a channel periodic in x with period 2
and bounded by walls =0 and . Whene=0, (1) is an
exact solution of the barotropic vorticity equation for
arbitrary A. Theform of the perturbation is correacnly in
the limit of small A andg; however, experiments with
various (k,l2) (to be discussed later) suggest thatresults
are not very sensitive to the spatial structure of the
perturbation, being controllegrimarily by the streamline
geometry of the unperturbed flow atige velocity amplitude
of the perturbation. Hence ware confident that theesults
we present forfinite A will survive a moreaccurate
specification of the velocity field.

In the comoving reference framg'=x-cit, (2)
describes a steady velocitfleld perturbed by afield
oscillating in time with period T=2v(ky(c1-cp)), and

constitutes a perturbed planar Hamiltonsystem| Figure 1
showsthe unperturbed streamlines the comovingframe
for A=1. This isthe value of Aused throughout thisaper,

Chaotic Advection

unless otherwise notedlhere aretwo stagnation points
(marked P and P') on thewer boundary, where particle

will remain forever if so placed initially. Thewre both
saddle ponts in thesensethat the linearized behavior in the
neighborhood of these points exhibits one stable and one
unstable direction. The stagnatiorpoints P and P' form
what is known as &eterocliniccycle being connected by
the upper arc PP' (the unstable manifold of P, which is
exactly coincidenwith the stable manifold oP') and the
lower segmenP'P (the unstable manifold of P' which is
exactly coincidentvith the stable manifold oP). Because

of the boundary conditionsthe latter ispreserved under
perturbation; however, &ss increased from zero the former
generically breaks up into a chaasiet. There is a deep and
extensive literature on the association between heteroclinic
(or homoclinic) cycles and chaos in perturbiddmiltonian
systems. Anntroduction to the subject can leund in
Guckenheimer & Holmes (1983).

The unperturbed wave hagprecisely the same
streamline geometry as that analyzedklmpbloch & Weiss
(1987) and Weiss and Knobloch (1989), thotiggclass of
perturbations we consider is somewhmbader. These
authors weremotivated by modulated travelingvaves
appearing in thermosolutal convection, butlearly
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appreciated that thenesults were apigable to modulated
travelingwaves generally. The Rossbywave problem we
consider herdasthe particular attraction that the basic state
is an exact nonlineasolution ofthe inviscid equations for
arbitrary amplitude; it also lends itself naturally to nonlinear
simulations probinghe connection betweepassive tracer
and vorticity mixing.

Theresults presented in this Sectishould for the
most part be regarded as a review of the sglimyerties of

the system as established by Weiss & Knobloch, though we
discuss the behavior from a somewhat different perspective,

and in a few instancesxtend theresults in a modestay.

An important departure fromthe system considered by
Weiss and Knobloch is that we imposeeantrant condition
on thetracer, so thataterialtransported out athe right of

the domain is reintroduced at tledt; Knobloch and Weiss
were principally concerned with transport amongates in

an infinitely long wavetrain, and so did not impose a single-
period reentrant condition.

ThePoincare magP provides a convenient means of
analyzing the structure of thearticle trajectories, when the
advecting flow is time-periodic. Thimap takes th@osition
(x,y) of aparticle on the plane tits position one oscillation
period T later. The sequence gboints (%,yj) obtained by

Chaotic Advection

iterating the map orsome itial condition isknown as an
orbit of the Poincaremap. From anexperimental
standpoint, plotting an orbit amounts to taking a
stroboscopicpicture of theposition of a single marker
particle eventime the advectinflow swings around to the
same state.

[Figure 2ishows afamily of numerically computed

Poincare orbits starting from a number of different initial
conditions fore = .1 and (kl2) = (1,2). The blue and
green orbitstrace out aseries of disjoint, smootkurves.
Orbits of this type are known &sri. The terminology is not
obscure if one recallthat thePoincare sectionare a 2D cut

of a 3D object (think of the intersection of a plamgh an
inflated inner-tube). Orbits in the tori are nonchaotic; they
are characterized by zero yapunov exponent, and
neighboring trajectories diverge froneach other only
algebraically in timg(typically linearly intime). We have
shownonly a fewrepresentative tori; theegions they span
are actually filled with a continuous family of tori. There are
two main regions of tori,one in the region exterior to the
mainvortex, and one at the core of the recirculating region
(shown indark blue and green respectively). Sandwiched
between theéwo is a"chaotic" or "stochastic" bandyhose
trajectory isshown in red. Trajectories in this region are
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chaotic, are characterized by a positiwgjhunov exponent
(hence exponential divergence of trajectories), fdindut an
apparently two-dimensionaftegion. One also sees an
elongatedtorus (light blue) embedded in the top of the
chaoticzone. There appear to be a numbersafchtori of
various shapes argizes, thouglthe smallonesare hard to
find. There is aymmetricallydisposedstochastic band and
region of "core" tori associated withe recirculating eddy
on the upper boundary, but it is not shown.

Considerthe behavior of amnitially small blob of
tracer located in a region of tori. The length of the cloud will
grow algebraically (typically linearlyyvith time. Ultimately,
the tracer will be redistributed uniformly along the invariant
torus it is initially centered on, but in the absence of
molecular diffusion there will be no mixiracross tori. If a
small moleculadiffusion is introduced, iwill act on the
algebraically amplifiedcross-torus concentration gradients,
resulting in greatly enhancedoss-torus diffusion. This is
clearly a generalization of thehear dispersion phenomenon
familiar from advection-diffusion problems involvirgieady
flows.

Mixing in the chaotic zone will proceedery
differently. Trajectories will separate exponentially rather
than algebraically, leading to more efficietispersalthan

Chaotic Advection

possible amongori. More importantly, a small blobwill
ultimately become mixed over area,rather than aurve,
even in the absence of molecular diffusion. typical
example ofsuchmixing is shown in Figure 3} whiclplots
the timecourse of a cloud a2000 particledocated initially

in a smalldisk within the chaoticzone. The disk isather
quickly elongated into ahort segment, whicthén jumps
around forseveral Poincare periods without beinguch
further stretched. Then it encounters a region of rapid
extension, angarticle dispesion occurs in a burst. The
geometry is still a filamenthough, and mixing over a 2D
region has noyet takenplace. This occurs subsequently,
through the stretching andolding of the filament, in a
process reminiscent of the kneading of dough. Note that the
folding and creation ofmultiple strands is aninevitable
consequence of continued elongation of the trileenents,
as folds must occur once the length dilanent exceeds the
size of the domain.

Theunstable manifolaf P is the set of pointshose
Poincare orbits asymptote to P as time runs backwards; it is
a key determinant of the mixingroperties ofthe gstem.
One can compute an approximation to the unstable manifold
by numerically findingthe fixed point of themap, and
tracking theorbits of asmall segment of particles initially
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located on a line coming out of the fixed point tangent to the
unstable eigendirection. A segment of the unstable
manifold, computed in this manner, skown ir} Figure 4.
There are clear similarities between the time course of mixing

shown in Figure 3and the geometry of the unstable
manifold. The resemblance is particularly clear in the
multiple stranded structure emanating from the vicinity of the
left-hand fixed point of the Poincameap. Itcould be said
that the tracer cloudhitially wandersabout without mixing
much, until it "finds" the unstablemanifold, whereafter it
tracks it and consequently fills out the chaotic zone. We will
see hints ofthe characteristic unstable manifold structure
again when we consideworticity mixing in the fully
nonlinear equations in 84.

The extent of the chaotic zone is a characteristic of
prime physical importance, as it determirtee region over
which efficient tracer homogeneization waitcur. In
e show Poincare sectionsthé chaotic zonéor various
€. For smalk the chaotic zone closelyugsthe heteroclinic
streamline structure of the unperturbed flow. eAscreases,
the thickness ofthe zone increasa®ughly in proportion,
until by € = .2 there is no longer any holetire center of the
main eddy,and the tracer homogeneization is expected to
become completéhroughoutthe gyre. This suggests a

Chaotic Advection

strategy for identifying mixing regions in realistic
geophysicalflows. One would split up theflow into a
"steady” (probably low frequency) ar@luctuating” part,
use the former to identify heteroclinstructuresand use the
latter to determine the approximakédth of the associated
stochastic zones.

Given that (2) is notactually a solution of the
equations of motion, one must be wary of any reshhs
depend on theetailed nature of the stipulat@erturbation.
Happily, chaos in such systems is very robast] depends
primarily on theunperturbed streamline geometry and the
overall velocity amplitude of th@erturbation. Atypical
example isshown in| Figure ¢, which displays ahaotic
Poincare orbitfor (ko,l2) = (4,4) with €=.05. This result
(and many otherske it we couldshow) suggests that the
oversimplified specification of the perturbation is not a
critical flaw.

3. Characterization of the mixing: Correlation
functions and spectra
As illustrated in Figure 3, the mixing proceeds in two
stages. In the first stage, the small blolra€er is stretched
out into a filament with size comparable to that of the chaotic

zone. Thereafter the stretching ariolding which leads to
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cross-streamline mixing commenceshe stretching in the
first stage is very intermittent in time, awcdn take quite a
while to getunderway. In fact, wehave found the time
requiredfor this stage to be highly sensitive to the initial
position of theblob, aproperty which is connected with the
intricate and fine-grained spatial variability ofinite-time
This matter, as it
relates to chaotimixing, istouchedupon in Pierrehumbert

estimates of the yapunov exponents.

1990,and1991a, buthe issiesare very deep and require
much further investigation which is outsitlee scope of the
present study.

We direct attention here to thsecond stage of
mixing. Howcan we characterize the degrearokedness
during this stage? Aabviouschoice is the variance of the
cloud of particles about its mean position. On reflection, this
is found to be unsuitable. Thariance already attains nearly
its maximum value for a single filamesmaking through the
chaoticzone, at astagewhen the flow is not atall well
mixed. It is relatively insensitive to subsequent mixing.

Instead, weintroduce thetwo particle correlation
function H(r) as way taharacterizenixing. Given a cloud
of N particles, one computé(r) in the following manner.
First, computeghe N(N-1)/2 distances betweeall pairs of
particles. H(r) is thenlefined as the number ghirs with
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distanceless than r.  H(r) encapsulates a great deal of
valuable information about the geometry of the cloud. H
asymptotes to a constant at large r, Hreddistance awhich

H begins tdflatten is indicative of the overall extent of the
cloud, be it a single strand or aarea-filling tangle.
Further, if H(r) exhibits a self-similar subrange in which
H~r% | thena is thecorrelation dimensioncharacterizing the
geometry at theorresponding length scaléSrassberger &
Procaccia, 1983).a=0 corresponds to particletustered at

a point, a = 1 corresponds twell-separated filaments of
tracer, anda=2 corresponds to aarea-filing cloud; the
whole panoply ofintermediatestructures associated with
fractionala is also available.

Figure 7 showsthe timeevolution of the structure
function tor (kp,l2) = (1,2) with € = .2, plotted on
logarithmic axes. The initiatondition consists of 10000
particles in a square of sid®1 centered on the point
(1v2,.25). Let H(r) be the structure function afteriterates
of the Poincare map. Forab there is a single subrange of
slope unitythatextends from small scales out to wherg H

begins to flatten out. This correspondghe stage atvhich
the cloudhas been stretched out to a single filament, or
perhaps a few very closely spaced filamerksr larger n,
Hn exhibitstwo distinct subranges— a slope-1 subrange at
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small r and asubrange with slope slightliess than 2 at
somewhat larger r. Thelbow demarcating théwo regimes
moves to ever smaller r asimcreases. Ararrangement of

thin filaments more or less uniformly spaced is one geometry

consistent with this behaviothe elbow of the correlation
function corresponds tthe meanspacing ofthe filaments.
This picture isborne out b, whiclshows a
snapshot of the particle cloud at n=7. As vifitb Poincare
cross sectionghe behavior of the structufanctions is not
particularly sensitive to the detailed formtbé perturbation.
In[Figure 9)we show K{r) for a (4,4)perturbation withe =

2. It showsall the same features present time previous
case.

The mixing is very nonlocal. It does not proceed in a

diffusive manner. Diffusion wouleliminate small scale
inhomogeneitie§irst, and then spreaithe tracer gradually to
fill the macroscopic vessel. In contrast, &braotic advection

Hn(r) converges tats asymptotic valudirst at large r as n

increases, andonvergencespreads to smaller distances as

time progresses.The mixing first distributes the tracer
throughout thechaoticzone, inthe coarse-grainesense. It

then proceeds to eliminate fine-grained inhomogeneities. As

the mixingcontinues, one musixamine ever smaller scales
in order todetectinhomogeneity. This kind of mixing is
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more like theshuffling of adeck of cards in whichhe top
half is initially blackand the bottom ignitially white. The
first shuffle distributedblack cards throughoute thickness
of the deck, thoughthere are still many clumps of black
cards in bands. Subsequent shuffteés up thebands and
give a more uniformdistribution. "Eddy diffusivity” is
unlikely to be a productive approach to parameterizing
mixing by chaoticadvection, but it is natlearwhat should
take its place. The following remarkprovides some
guidance, however. Suppo#®t the length of filaments
increases exponentially in time with average kafeelated to
the Lyapunov exponent, which in turn ielated to the
amplitude and fluctuation intensity of the large scakere).
Then, ifthe domainover whichchaotic mixing takeplace
has a characteristic length scale L, the typt@nd spacing
scales with L@t because a strand of lengtht enust have
roughly L/e\t folds if it is crumpled so as to fit into the
domain. Hencethe timerequiredfor inhomogeneities to be
eliminated down to scale d is proportional\tdIn(L/d), and
this state of affair®ccurs onlyafter the tracer is distributed
acrossthe whole domain, inthe coarse-grained sense. In
contrast the diffusive dampingime for inhomogeneities of
scale d is D, andthe (longer)time requiredfor diffusive
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transport to fill out a region of size L i$/D, where D is the vorticity distributions range fromlkto k1 ; steeper spectra
diffusion coefficient. do not have enougpower atsmall scales tosupport a
It should be evident fronthe precedingdiscussion spatially self-similar geometry. An important subtlety,
that H(r) contains much of the information traditionally  discussed iPierrehumberfi991b, is thathe limits k- oo
obtained from spectral descriptionstbé tracempattern. In anda - 2 are not interchangeableOne recoversthe ki
fact, elementary manipulations establish that thewer spectrum at sufficientlyshort waves fora infinitesimally
spectrum of a cloud of delta-functions characterized by a less than 2, but if we set=2, the coefficient of the #
structure function H(r) is leading term of the asymptotics vanishes. This is so because
00 Jrdo(kr)dr vanishes for onzero k, beingthe 2D Fourier
C(K) = (const.) kJ C:j_t'Jo(kf) dr 3) transform of a constant. In thisise the spectrum is steeper
0 than k1, the precisesteepness beingetermined by the
where § is a Bessel function an@(k) is the conventional nature of the discontinuities of the vorticity field and its
isotropic concentration variance spectrum, defisichthat derivatives. The® spectrum reported in Saffman (1971) is

its integralfrom k=0 tow is the net variance of the tracer ~a@n example othis behavior, corresponding watches of

concentration. (See Pierrehumbdi®90 and Weiss and uniform vorticity demarcated bgharp gradients. Weave

McWilliams 1990 ) An immediateonsequence of (3) that found that fora = 2, the spectrum exhibits a steep

if H(r) has anextensivesubrange with behavio®y then spectrum at moderate k but 1) spectrum at sufficiently
C(k) will have asubrange with behavior 1# . This short waves.
observation links the correlation dimension wtite classical The spectrum computed bgessel transform of

Hoo(r) for the (1,2) perturbation case is shown in Figure 10.

notion of self-similar(i.e. power-law) spectra. A more
completediscussion ofthe connection between spectra and !N accordance withthe almost two-dimensional mixed
fractal geometry may beound in Pierrehumbertt990 and subrange shown in the correlation plots, the specsiuows

Pierrehumbertt991b. The spectra associatedth fractal a kl shortwave behavior. This [gecisely the same as the
classical spectrum of a passiteacer in homogeneous,
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isotropic 2D turbulence (seeg. Rhines 1979). However,

the classicalreasoning relies on scaling arguments which

build upon assumptions of locality in wavenumlsgrace.
For chaotic mixing, these arguments are invalid their
customarily stated form, as thehortwave spectrum is
determined nonlocally, being controlled entirely by ldrge
scale advection. Hencehe replacement of the scaling
argument with the geometric arguméaised on mixing to a
dimension slightly below 2 is a critical step.

In point of fact, a simple modification traichnan's
(1971) oflogarithmic

phenomenological derivation

corrections to the enstrophy-cascading spectrum also yields a

k-1 spectrum forthe tracer spectrum in chaotaxvection.
Paraphrasing Kraichnan's eq(lL.5), if A(k) is the net
concentration variance transfeEom all scales < k to all

scales >k, then

k C(k
e

where T is the characteristitime scale for distortion of

concentration structures wiitale k1. Kraichnan proceeds
to compute in terms of an integral ovell scales of motion

with wavenumbers less than k, and then cho@see as to
make/\ constant, agequired in an equilibriunsituation.

For chaotic advection, in contraghe characteristiime for

Chaotic Advection

distortion of small concentratiomlobs is fixed by the
separation rate afeighboring trajectories ahe large scale
advecting flow. In consequenceis independent of k and
we requireC(k) ~ k1. The situation is rather ironic:
Kraichnan found dogarithmic correction to the spectrum
that restoresthe integrity of the scaling argument by
preserving locality.Perversely, by assumingufficiently

extreme nonlocality we obtain a scaling argumetitat

recovers the uncorrected result.

4. Vorticity nonlinear
integrations
Potential vorticity is also dracer, butthe key

difference with a passive tracer is that, owing to self-induced

mixing in fully

rotation, small scale vorticity concentratiarenresist being
sheared out byhe large scalélow field. However, if the
large scale strain is sufficientgtrongcompared to the small
scalevorticity, the latter maynevertheless be dispersed in a
fashionqualitatively similar to thepassivetracerdispersion
illustrated above. The genericness tife mixing, noted
above, is of importance in this context. As long as a vortex
is not so intense as to hold togethethe fact that its
evolution alters the detailed form of the large scale advecting

flow should not change the general properties of the mixing.
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These ideas are investigatettirough numerical
integrations of the barotropic vorticity equation
o 02p +J@, 0%y +py)=0 4)
subject to thénitial condition
P(x,y,0) =
ay + A cos(kx)sin(lry) + ecos(kex-0)sin(lby) (5)

With e= 0 thewave retains its form indefinitely in
time, as it is an exact nonlinear solution; trivially, there is no
mixing. The picturewould becomplicated by instability of
the primary vave, but suppression die subharmonic by
the boundary conditions seems to eliminaiehinstabilities;
the degree of geometric confinement is not sufficient to
guarantee stability byArnold's second theorenhowever,
and we areunaware of any proof of this evident stability.
For nonzeroe the initial condition is no longer a steady
solution, and so there will betime fluctuations, which
presumably increase in amplitusath increasinge. The
fluctuations of Y in this problem cannot bexpected to
resemble those ithe constrained advection probl€®), so
€ plays a morecomplicated rolehere. An important
difference from(2) is thatthe amplitude of the fluctuations
need not beime independent. Ithe system approaches a
steady state (through vorticity mixing otherwise)the time
fluctuations will decay to zero and further mixing wiéase.

Chaotic Advection

Nonetheless, wecan look for the signature ofchaotic
advection in the course of this time evolution.

We could examin@assivetracer mixing in theime
varying| field yielded bysuch an integration, but oumain
concern here is withdynamical implications of chaotic
advection. Hence we will confineur analysis to the
potential vorticity field associatedith  itself. One might
think thiswould be adifficult system to analyze, in that the
vorticity is providing itsown stirring. Howeverpecausep
is related to the vorticity by an inverse Laplacian, it will have
a larger characteristic scale than traticity, once small
scale vorticity structures are generated. This scale separation
means that vorticity and streamfunction can almost be
regarded as separate entities. A particulaslgar cut
example ofthis is provided by nonlineaRossby wave
critical level dynamics (see Killworth & McIntyr&985 for a
review), in which the vorticity field can beprecisely
regarded as being advected by the large scale component of
the streamfunction alone.

A more serious poblem with the chosenfamily of
initial conditions is the dual role of with regard to the
survival of smallvortices. Increasing on the one hand
favors survival of small vortices by increasing therticity;
on the other hand it favors their destruction by increasing the
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magnitude of the fluctuation of the large sdébev. Hence,

we do not addreghe question of formation and survival of
small intense vortices such as studiedvmWilliams (1984)

in the case ohomogeneous turbulence. Such vortices do
not emerge, or play any role, in anytbé calculations to be
reported below.

The technologyfor numerical integration of2) is
well established, and little needs to be said alitoutFor
historical reasons wemploy a semi-spectral numerical
model (pseudospectral in x, witsecond-order finite
differences in y). The timestep is a standard leap&wrcgpt
for episodic employment of Euler-backward to keep the even
and oddtime levelsfrom drifting apart. All calculations
reported below were carried out with 512 mode resolution in
x and 256 gridpoints in y. There is nodiffusion in the
calculation, excepfor what may have been introduced
numerically. None of the results presented are limited by the
resolution. At higher resolution, oman track the vorticity
field farther intime before Gibbs' phenomena interfere, and
hence one can see the vorticity nti@wn to finer scales.
However, the resolution employed is wellemcess ofthat
needed to isolate the ba&iehavior. There is no indication
of anything fundamentallynew happening withincreased
resolution in this series of experiments.

Chaotic Advection

In this section we shallliscussthree simulations.

Experiment1x2] was done with =1 and $=2, €=.2 and
0= 0. It is indicative of the mixing proceedifigom a flow
with initial vorticity entirely in the largest scales. Experiment
[1x2s] is precisely theame, except thdhe perturbation is
shifted by a quarter wave with respect to the basic state wave
(6 = 12). It provides aninteresting comparison with
Experiment [1x2], as the initial conditions have precisely the
same energy ancnstrophy, yet lead to very different
evolution. Experiment[4x4] wasconducted with §=l>=4,
€=.1 andd=0, and is indicative of the behavior whitrere is
an initial scale separation between the basic statee and
the vorticity perturbation.
The vorticity evolution for Experiment [1x2] is

in| Figurell.| In this experiment,the initial
perturbationhas extrema inphase with those ofhe basic
state; itstrengthenghe vortex at theupper right of the
domain andweakensthe vortex at thelower left. The
signature ofthaotic mixing is very clear ithis case. The
weakened vorticity of théower left vortex is stretched and
folded into a series of ever finer and more closely spaced
filaments, and its variation igus cascadedlown to ever
smaller scales. Theorticity in the open streamline region

shown

exterior to the gre, where we foundori in the passive
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advection case, undulates but does not s$iovilar signs of

mixing. With the grey-scale palette employed in Figure 11 it vortex by Polvaniet al.

is difficult to see what is happening to the vortex at the upper
right. Hence, we show this region with a remapped palette in
It is evident thathis vortex shows a"core"
region which does not homogenize amix with the
surrounding fluid, surrounded by ralatively thin mixed
(chaotic) band. This behavior is consonant wiitle €
dependence of the stochastic zghewn in Figure 5. The
upper vortex is stronger relative to the magnitude ofithe

fluctuations, and so has Ghaotic zone that more closely
hugs the unperturbed heteroclinic cycle.

The vorticity fields for Experimerijtlx2s] are shown
in In this casethe initial perturbatiordoes not
particularly favor one gyre over the other. In this case, both
large scalegyreshave a well-defined corsurrounded by a
An interestirigature of this
experiment is the persistent transient pulsation of the core

broad stochastic band.

regions. The unmixed core vorticity attains a vaguely
elliptical shape, which undergoeepeated elongation and
contraction as itotates. The pattern is already evident at
t=39, and while there is some indication sibw relaxation

to a steady statdhe fluctuations are still considerable at
t=63. This behavior is reminiscent of the Great Dark Spot of

Chaotic Advection

Neptune, which hadeen interpreted as a pulsating Kida
(1990). The ontrast between
Experiment [1x2] and Experiment [1x2s] shows that
whether one gets a steady core (lkgpiter'sRed Spot) or a
pulsating core (like Neptune's Dark Spoéih be a matter of
initial conditions. That radically differentend states can
evolve from nitial states [1x2] and [1x2s] havinigentical
energy and enstrophy has some interesting consequences for
the role of higher invariants in the statistical mechanics of 2D
turbulence. We shall return to this point in 86.

Finally, we turn toExperiment [4x4], shown in

This is @articularly stringent test of thehaotic

advection hypothesis, dhe rms \elocity amplitude of the
perturbing small scale field is full$3% of that ofthe large
scale wave. The background wave is hardly detectable in the
initial total vorticity field. Yet the large scalevave isthere

the whole time, controlling the vorticity mixing, and its form
clearly emerges as the perturbation vorticity is mixed down
to smallscales. Thend state is characterized by moderate-
sized vortex cores embedded in a broad stochastic band. The
core vorticity is comparable in magnitude to the initial
vorticity in the core region; a vortex pegg in the initial
perturbationhas beome trapped in the region of coieri,
strengthening the circulation andhus enhancing the
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predisposition ofthe large scaldlow to have tori here.
These cores do not exhilgulsations like those observed in
the previous case.

Vorticity cross sections along two lines of constant x
intersecting thdwo large scalegyres are shown for each
case in Figurel5. | Case [1x2]clearly shows the broad
homogenized region associated witie lower left eddy.

There is no unmixedore,and the gradients are expelled to
the exterior of the ady. The upper right eddy exhibits a
core region as well as a (relatively thehaotic band, and
region of exterior gradients. In Case [1x#} structure of
Botlexhibit a core
vortex region of approximately the same size, surrounded by

the two vottices isless asymmetric.

a homogenizedegion, which in turn is bounded by an
Case [4x4] yields a
similar pattern, thoughthe exterior gradientregions are

exterior region ofstrong gradients.

somewhat less prominent visually, owing tiee higher
vorticity variance (which stems from the initial conditions).
The long term bénavior in all these casesnay be

summed up as follows. The flow evolves taearly steady
state (in the coarse grainedense), with scales and
streamlines resembling thosetbé initial large scalevave,

but having redistributed vorticity. The end state vorticity
distribution consists of regions dfomogenized vorticity

Chaotic Advection

surroundingthe heteroclinicstructures ofthe large scale
wave, and regions of smooth vorticity gradients
corresponding to regions of tori ithe associateahaotic
advection problem. Thgradient-containing regionare of
two types:
streamlines snaking betwedme two recirculatinggyres of

the large scallow. The other (which is present only if the
time variability is sufficiently wak) is associated with the
core region of the recirculating gyres. The former represents
a barrier to mixing analogous to tiatind atthe edge of a
simulated polar vortex in the laboratory experiments of
Sommeria, Meyers & Swinney (1988). Thepaarance of
invariant tori inperiodically perturbed Hamiltoniaflow is a

one isassociated withthe layer of"open”

familiar phenomenon, buteir survival inthe face of the
broadband time fluctuations appearing in the vorticity
simulations is striking and unexpected.

The formation of ever grained vorticity
filaments adime progresses is anstantiation ofenstrophy
cascade to smaficales.

finer

Themixing is highly nonlocal in
wavenumber space, and so invalidates the classiodarity
arguments leading to th€olmogorov-Kraichnan spectrum.
However, the resemblance of the vorticity evolution to
passivetracer mixing by chaotic advection leadse to
conjecture that a-k shortwave spectrurmay nevertheless
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emerge, as it does in the passive traeese. A missingink
in this argument is thathe reasoning summarized in 83

Chaotic Advection

When it firstappearsthe slope is steepthe shape being

roughly k2. In accordance witthe arguments of Saffman

connecting geometry to spectra is based on clouds of (1971), this is indicative of an arrangement of well-separated

vortices of identicalstrength, whereathe actual vorticity
fields have continuously distributeclue. Thismay not be
a critical failing, as from a coarse-grainederspective
regions oflarge vorticity can be approximated r@gions of
high density of vortex blobs, and conversely. At fént,
however, weare not certairhow to make this argument
more rigorous.

The enstrophy spectréor experiments [1x2s] and
[4x4] areshown in Figurel6. | These are isotropispectra,
angle-averaged overall wavenumbers with a given
magnitude, andnultiplied by k so that the integral with
respect to k givethe totalenstrophy. The wavenumber is
normalizedsuch that k=1 corresponds tiee length of the
gravest non-constant mode in x. As is evident from the
vorticity cross sections in Figur&5, the vorticity is not
periodic in y (owing to the beta effect). If left ithis would
itself lead to a # contribution to theenstrophy spectrum.
Hence we have detrended the vorticity field by subtracting
off B * y before computing spectra.

In both cases,the spectra rather quickly exhibit a
self-similar range at small scal¢wavenumbers10-100).

curves on which the vorticity gradient is large, separating the
plane into regions within which the vorticity is comparatively
uniform. As time progressesthe slope decreases, and
ultimately approacheshe k! classical form. Thelassical
spectrum emerges more quickly in experiniémid] than in
experiment[1x2s].
precisely opposite tadhat seen in experimentsuch as
McWilliams (1984), Benzi et al. (1986) and Legra®t al.
(1988) beginning witlspatiallyhomogeneous and isotropic

Thetime course ofthe spectrum is

initial conditions; in these casdbe spectrum is initially
shallow, and becomes progressively steepdimasgoes on
Though our
experiments reveal the same dichotomy between steep and

and small coherent vortices freezmit.

classical spectrathe physics of what is going on is
In the
experimentdiscussed heresmall scale persistent vortices

completely different fromthe homogeneous case.

neverappear, presumablyecause the large scale strain is
too strong to allow them to survive. Timitial steep spectra
are instead associated with a certain degresmmiothness in
the filamentary structure, which is lost as time goes on.
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Our discussion to thigpoint has emphasized the but not exponentially so; the behavior here is suggestive of a
emergence of a classicsthortwave spectrum. However, it k-3 to k4 enstrophy range, thougjiven thediscreteness at
should benoted that in the present problem (aoerhaps such long waves it is not possible to be very precise. An
more generally) this spectral range is characterizing a part of infinitely smooth (infinitely differentiable)  vorticity

the flow which is dynamically rather uninteresting and  distribution would yield an exponentially decayisgectrum,
perhaps entirely irrelevant. It idlieg us something about so the algebraic spectrum indicatdest, viewed atlarge

the "fuzz" on the vorticity curves in Figl5, whereas the scales,the vorticity field exhibitsjumps (more precisely,
overall shape ofthe curves isclearly moreimportant. The rapid transitions) in sufficiently high order derivatives. It is
spectrum in the range=10 to 100 accounts for around 1% noteworthy that a jump in vorticity gradient yields & k

of the totalenstrophy athe latertimes. What isfar more isotropic enstrophy spectrum. Thpgture is consistent with
interesting is that the classical spectrimegins at about the rather sharp boundaries between macroscopic
k=10. Recall thatthese experiments represent decaying homogenized regions and non-homogenized reguitent
turbulence, rather than continuosly forced turbulence, so in Figures 12-14 and Fig 15.

there is no injection length scale to naturally determine the The following overall picture emerges. The

boundary of the enstrophy cascadsuprange. There is no
obvious reasorthe enstrophy cascading regioshouldn't
extendall theway tothe largesscales,instead of stopping
an order of magnitude stio That itdoesn't igndicative of
the stability of some large scdlew "nearby” (in a funtion
theoreticsense) tahe initial conditions. Thishypothetical

crossover wavenumber represetite intersection of the
steep spectrum characterizing a stable large-schdg with
the k!l spectrum characterizing the chaoticalgixing,
enstrophy-cascadingpart of the vorticity. Since the
enstrophy is constant (and finite) afl times, the ki
subrange mugtave ashortwave cutoff & which increases

flow is resistant to disruption, and so its enstrophy cannot be with time as themixing proceeds to ever finecales. If the
bled off to small scales. enstrophy range is written as A3k then A mustdecay
The structure of the large scale spectrum is itself like 1/log(ko), in order to keeghe enstrophy in thigange

rather revealing. Ithe wavenumber rang&-10, it issteep constant. Hencedhe crossover wavenumber increases with
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time and eventuallydisappears from view, leaving only the
large eddy behindViewed inthis way, the initial condition
projects (nonlinearly) on a "steady statgilus a
"perturbation” vorticity field, and astime goes on the
enstrophycascade acts asdissipation,getting rid of the
latter by removing it to small scales. The detailh@iv this
scenario is played out depends the proximity of stable

Chaotic Advection

In order to fomalize this idea, divide the
streamfunction field up into a pa#(x,y,t) which haslarge
spatial scale, and @'(x,y,t) which is the advected
perturbationfield, having asmall spatiakcale. Theformer
is the specified large scale field doitige advecting. Let the
correspondingyorticity fields be Q andy’. Wewill show
that the time-integrated Reynold's stresses acting darte

large scale states to the initial condition, and so is expected to scale flow yield anet increase in energyhenthe passively
be highly dependent on the configuration of the experiment advected field loses energy. The vorticity equation is

at large scales.

5. Vorticity mixing and upscale energy transfer

The previous section established @aonnection
between chaotimixing, potential vorticityhomogenization,
and the downscale enstrophy cascade. We examine the
implications for the upscale energy tranfers that are the
hallmark oftwo dimensional turbulence.The basic idea is
as follows. If asmall scale eddy is nattrong enough to
resist dispersal bthe large scaldélow, its vorticity will be
redistributed over a largarea. Asmall scale vortexoses
energy in thecourse of beingdispersed.Since energy is
conserved fothe system as a whol¢he energyost by the
small scales must be gained by the large scales.

0t Q+[orq +JIW,q)] +
40,Q) +I®.Q) +J¢q) =0 (6)

However, if the small scale field is passively advected by the
large,we have

orq +J¥.q)=0 (V)
andthe bracketed terms i(6) vanish. To formthe large
scale energy budget, we multiply (6) $yand integrate over
all space. Denoting the spatial average by>< and using
integration by parts, we find that

dE
-+ <WIW.Q)> + WIW'.q)>=0 (8)

where E is the kinetienergy of the large scaftow. The
first averagedterm is linear in the primed quantity and
therefore will nearly vanish ithere is a separation in scale
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between the primed and unprimgdantities. Thus, within
this approximation

dE
g - WJW'.g)>=0 (9)

The bracketed expression is the conventional
conversionterm appearing irmost diagnostic analyses of
atmospheric energpudgets. Further, bynultiplying the
passive advection equation gy and integrating, we find
that
dE' o
-t —~YIW.g)>=0 (10)

where E' isthe kinetic energy of the primedield. In
E+E'
consequence-gr . =0, and we have the desired result

than any energy lost e small scale eddies is gained by
the large scale.

Now let us see how well these ideaswork in
vorticity simulationssuch as discussed in 84Since the
eddies of interest are large scale amisotropic, wehave
found it mostinformative to decompose the motion into
Fourier modes in x alonaggregatingall modes withzonal
wavenumber n intdhe energy K(t). [Figure 17shows the

behavior of the energyfor A=1 subject to a(4,4)
perturbation witre=.2. As predictedthe fundamental mode
energy k increases in step with the decay of the perturbation

Chaotic Advection

energy . The effect of varying and A is shown in Figure
18. Focusing first othe results at fixed A, we see that the
time scalefor the energy capture is insensitivegto This
observation establishdisat theenergy transfer is not due to
subharmonic instability ofhe (4,4) wave, whose growth
rate would scale withe. Reducing A, on the othdrand,
does delay the energy capture.

The above results establish that the laeddy serves
as the pacemakéor the upscale energyansfer,andhence
points the way to asimple parameterization of large eddy
maintainence. However, it is fair to point out that the
capture of energy by the large scale is virtuatiynplete by
t=2, astage well beforehaotic mixing of the vorticity has
gotten underway. At this stagie small scale eddies have
become substantiallglongated, buthe filaments have not
yet completed a single circuit about the large eddies. Chaotic
mixing of vorticity in principal could be a potent means of
cannibalizing the small eddy eggr butthe effect is clearly
not of importance in the experiments reported htis; is
underscored by the fact that the behavior in Figureh8vs
no qualitative change as A is redudeelow .5 and the
heteroclinic cycle is eliminated.

What isgoing on here iseally not so very different
from the energy capture mechanistiscussed by Shutts

Geophysical and Astrophysical Fluid Dynamis8, 285-320.



20 Chaotic Advection

(1983) in connection withmaintainence of atmospheric  with the synoptic eddy field Onewould need a mechanism
blocking patterns by synoptic transient eddies. Shutts noted for preferential ingestion of potential vorticity anomalies of a
that the shearing out of small eddies by a large scale diffluent given sign.

jet createsReynolds' stresseshich pump energy into the It is noteworthythat the upscaleenergy transfer
large scale, areffectwhich wasalready wellknown in the discussed in thisestion occurs withoubenefit of either
simpler context of plane Couettiew. Haines and Marshall vortex pairing or a ®/3 energy cascadinipertial subrange.

(1987) indeed found such energy transfers toamifest We suggest thahe situation presented above —which
themselves in fully nonlinear simulations of small eddies there is an energetic planetamave thatdirectly captures

propagating through blocking patterns. energy of any small eddieghich appear and then proceeds
Blocking presents aatural arendor the application to mix their enstrophy away temall scales— is a better
of chaotic advectionconcepts, aslocking is practically archetypefor turbulent flow inthe Atmosphere than the
synonymous withthe appearance of closestreamlines, traditionalhomogeneoupicture based on amjection range
particularly at lower levels. Asnoted above, nthing separating longwave energy cascade asdortwave

fundamentallynew hasbeen learned with regard to the enstrophy cascade. Indeed, Boer and Shepherd (1983)
energy budget of the blockThe novel implications concern found thatthe Atmosphere exhibits anstrophycascading

the potential vorticitybudget. One expected effect is the inertial range at smaficales, but thahe energy cascading
homogenization of potential vorticity within the blocking inertial range sperum is missing, even thoughthere are
region; this is unlikely teeriouslyaffect the persistence of  clear transfers of energy to the largest scales of motion.

the block. An effect of greater import is the exchange of 6
potential vorticity between the block and &srroundings,
via leakagethrough thintails like those appearing at the
bottom boundary of Figures 4 and 8. Thisterchange
would erode the potential vorticity of the blockyhich
cannot in anyobvious way be resupplied bpteractions

Discussion and conclusions

Using modulated travelingRossby waves as an
example, we have investigat#ite properties of mixing by
class oflarge scale two-dimensionfllows of geophysical
interest. In thesdows, which aredistinguished by regions
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of recirculating streamlinesbounded by a separatrix,

Chaotic Advection

ideas have considerable explanatpoyver when adped to

enhanced mixing occurs in a stochastic band surrounding the potential vorticitymixing. Homogenizedvorticity regions

separatrix. The character of theixing, asrevealed by an
analysis ofthe two-particle correlatiofunction, is different
from diffusion. It first mixeghe tracer over droadarea in
the coarse grained rs&e, and then proceeds teliminate
progressively finer grained inhomogeneities. This kind of
nonlocal (in physical space) mixing cannot be faithfully
represented as an eddy diffusion, and insofarsiaslar
phenomena occur inature, attempts teharacterize large
scale mixing by eddyiffusion coefficients derived from
data are bound to give unreliable results.

Even thoughthe mixing is governed byrocesses
that are very nonlocal in wavenumbspace,the power
spectrum of passive tracer concentration obeys a classical k
form. We have obtained this result frotwo disparate

appear where one expects chaotic zones icdhesponding
passive advection problemwhile regions of surviving
potential vorticity gradientsorrespond to regions abri in
the advection problem. Tmake thetheory fully predictive,
one would need a means of estimating the amplitudargdé
scale temporal fluctuations proceediingm a given initial
condition; we have not yet accomplished this.

Vorticity mixing by chaotic advectiorprovides a
clear-cut example of macroscopically irreversible mixing
produced bythe microscopically reversible Eulequations.
Hopefully, this remark will resolve any remaining
controversy surrounding the usetbé term "Rossbyvave-
breaking" by Mcintyre and Palmé€t983). Thecontroversy
(which in our opinion idargely pointless) focuses on the

arguments. The first is a geometric argument based on fractal question of whetherthe resulting mixing is reversible

dimension of the concentration distributionbe second is a
phenomenological scaling argument based scale-
independence of the characteristime for distortion of
concentration blobs.

Integrations of the barotropic vorticity equation
subject to initial conditions consisting of a perturdadye
scaleRossbywave demonstrate thdihe chaotic advection

(McIntyre and Palmer 1985). Chaptic mixing is
macroscopically irreversible despite the reversible Euler
equations in precisely the same sense that molecular
diffusion is irreversible despitethe reversibility of
Newtonian mechanics. Strictlgpeaking, ifone runs the
system backwardsthe mixed cloud inFigure 8 will
condense back into a small blob, "unscrambtimgegg,” as
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it were. However, owing tdhe exponentially sensitive
dependence of trajectories on init@nditions, a vergmall
perturbation to theflow or the particle positions would

prevent the unscrambling.

Considered as a decaying 2D turbulence experiment,

our resultshave some interesting implicatiofe the nature
of the enstrophy cascading subrangetlie presence of an
energetic large scale wave. In the cases we t@aveidered,
the largeeddy controlsthe enstrophy transfer arbitrarily
small scales, witHocal (in wavenumber space) interactions
playing no detectable role. Despite the extremoelocality, a
classical K enstrophy spectrumltimately emerges at small
scales. Giventhe manifest similarity between vorticity
mixing and passivéracer mixing in thesexperiments, the
enstrophy spectrum is probably accourftadby arguments
similar to those we have advancddr the passive tracer

case. The vorticity participating irthis spectrum isfossil

Chaotic Advection

The importance of the largaddy should not be too
surprising, inlight of thewell-known theoretical arguments
for nonlocality of theenstrophy cascadingnertial range.
Kraichnan (1971) gets arourttie nonlocality by finding
logarithmic correctionghat estorelocality; our findings
show thatNature has ateast one otheway out of the
dilemma. Speculations about the connectwith 2D
turbulence in the Atmosphere are premature atsthige, but
our results demonstrate that the effect of the planetamnes
must be acentral concern imny study of this phenomenon.
Indeed, Shepherd (1987a), who seems to havetheemly
investigator to have worried abasiich maers previously,
found that half of the spectraknstrophy transfer was
associated with interactions betwedhe large scale
stationaryflow andthe smalleddies. He suggested tlis
was due to shearing out of eddiestbg zonalflow. If one
enlarged consideration to includtew frequencyfluctuation

vorticity,” which hasalready given up most of its energy to
the large scalavaves; upscale energy transfecting to
maintain the planetaryvave doesindeed occur in our

of the wavy planetary jets, chaotic advection comes into play
and one may beble to accounfor even more of the
enstrophy transfer. The question is whether most of the
enstrophy transfer to small scales occurs in regions of tori or
regions of chaos; this is ampiricalquestion, thatan be
answered with reference to suitable analyses of the data.

experiments, but it is essentialgomplete after a single
large-eddy turnover timelhe energy transfer is associated
with the initial distortion of the small scale edfilgld, and is
independent of chaotic vorticity mixing.
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Our experiments, like those of Marc{i988), show
that if there is dnearby" stabldarge scale state fends to
emerge, andhe enstrophycascade acts as a dissipation to
get rid of theunwanted enstrophfgetting rid of unwanted
initial energy is more problematic). Comparison of cases
[1x2] and [1x2s] in 86 demonstrates that knowledge of the
initial energy and enstrophwlone does not suffice to
determine thdong term bénavior of thesystem; it is a clear
affront to formulations of statistical mechanics of 28w
based on Kraichnafl975). However, the two initial
conditions do differ in their higheorder invariants(like
maximum andmninimum vorticity). Recently Miller (1990)
has shown how toncorporate the full hierarchy of vorticity
invariants into the statisticahechanics. Shepherd (1987hb)
demonstrated non-ergodicity on thenergy-enstrophy
hypersurface, based opxistence of nonlinearly stable
equilibrium states. Thigriticism doesn'tapply to Miller's
formulation, provided there is only a single stable state on an
isovortical sheet; whaMiller considers is essentially an
excited state of such a vortex.

The output ofMiller's theory is avorticity field
representing the ensemble mean (and presuntiaidymean)
long term behavior. The vorticity in this state isalways
constant on thecorresponding streamlines; it is axact

Chaotic Advection

nonlinear solution ofthe Eulerequations, anchence the
fluctuations have no longgrm effect. The vanishing of the
fluctuations is related tMiller's finding that mean field
theory isexactfor this problem, which isndeedwhy he is
able to compute aolution. Thevorticity evolution in our
simulations appears consistent wiifie picture emerging
from Miller's work, thoughthe ultimatetest of consistency
would be to use Miller's formalism wmwmpute the end-state
corresponding to ounitial conditions. This is anontrivial
and difficult computation, which must be deferred to future
work.

Chaotic mixing is a productive and powerful cept
which is likely to find many future applications in the
atmospheric andoceanic sciences. Of the various
possibilities, two problems aparticularly ripefor study as
they have an asymptotic regime Which potential vorticity
exactlyacts as a passisealar. The problemare Rossby
wave critical level dynamics (Killworth & Mcintyre 1985)
and baroclinic equilibration with weak surface flow (Warn &
Gauthier, 1989). Both casésve beerworked out for a
single wave, which yields a steady advecting streamfunction;
the ambient vorticity gradient is mixed algebraically by being
wrapped up into aspiral. In both caseghe steady
streamfunctionhas aheteroclinic structure, and sowill
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produce chaotic mixing if perturbed by a secondave.

Given the generic nature of chaotic mixing, there is reason to

hope thathe fundamental behavior in thepeoblems does
not change much as the parameter controling the
asymptotics ismade larger. Carrying out this program
would build a bridge between thielealized behavior and
real-world problems such dlse dynamics of the equatorial
stratospheric'surf zone" (Mcintyre and Palmet983), or
baroclinic equilibration in the presence miltiple unstable
waves.
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............... Bincare' orbits for=.05, but with

short wave perturbation
ko=l>=4.

having
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Hn(r) for € = .2, (1,2) perturbation

10°

10'
1000 —f T
0.001 0.01 0.1 1 10
distance
Figure 7.............. Two particle correlationfunction for

(1,2) perturbation with €=.2. The

initial condition is a square of side .01
centered on1¢/2,.25). Thebold lines

have slopes 1 and 2.
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H.(r) for (4,4) pertL:rbation with € = .2

0.001 0.01 0.1 1 10
distance

Figure 8.............. Tracer cloud at Poincargerate n=7

S Figure 9............... As in Figure 7, but for (4,4)
for the case shown in Figure 7.

perturbation witre=.2.
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Power Spectrum

1 10 100
Wavenumber

Concentration power spectrum of
tracer cloud ah=20, and n=40 for a
(1,2) perturbation withe=.25 The
initial condition is a cloud o#0000
points distributed uniformly over a
square of side.01 centered on
(1v2,1.)
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g

Figure 11............ Potential vorticity for case [1x2] at (a)
t=0, (b) t=7.8, (c) t=15.6, (d)
t=20.8, (e) t=26.0 (f) t=31.2
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Figure 12............. As inFigure 11, but remapped to
emphasize the upper right vortex.

Figure 13

(a) t=0, (b) t=39.0 (c) t= 63

Geophysical and Astrophysical Fluid Dynamis8, 285-320.



7 Chaotic Advection
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Figure 15 Vorticity cross sections along lines
x=constant for cases [1x2], [1x2s] and [4x4], taken at the
final times shown in Figs. 11-14.
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14............ Potential vorticity for case [4x4] at (a)
t=0,(b) t=10.4, (c)t=31.2
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Enstrophy spectrum [1x2s] E(t) for A=1, 4x4 wave perturbation,eps = .2
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| j Figure 17............ Net energy Kt) in zonal mode n for
10" £/ N P A=1 subject to a(4,4) perturbation
‘ : with € =.2.
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! levavenumb%(go 1000
Figure 16.......... Enstrophy spectréor (a) case[1x2s]

and (b)case [4x4]. Thebold lines
have slopes 1 and 2.
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E,(t) for various (g A)
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Figure 18............. Energy E(t) in wave 1 for(4,4)
initial  perturbation  with  various

combinations €,A).
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