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Surface quasigeostrophic turbulence: The study of an active scalar
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We study the statistical and geometrical properties of the potential temperature~PT! field in the
surface quasigeostrophic~SQG! system of equations. In addition to extracting information in a
global sense via tools such as the power spectrum, the g-beta spectrum, and the structure functions
we explore the local nature of the PT field by means of the wavelet transform method. The primary
indication is that an initially smooth PT field becomes rough~within specified scales!, though in a
qualitatively sparse fashion. Similarly, initially one-dimensional iso-PT contours~i.e., PT level sets!
are seen to acquire a fractal nature. Moreover, the dimensions of the iso-PT contours satisfy existing
analytical bounds. The expectation that the roughness will manifest itself in the singular nature of
the gradient fields is confirmed via the multifractal nature of the dissipation field. Following earlier
work on the subject, the singular and oscillatory nature of the gradient field is investigated by
examining the scaling of a probability measure and a sign singular measure, respectively. A
physically motivated derivation of the relations between the variety of scaling exponents is
presented, the aim being to bring out some of the underlying assumptions which seem to have gone
unnoticed in previous presentations. Apart from concentrating on specific properties of the SQG
system, a broader theme of the paper is a comparison of the diagnostic inertial range properties of
the SQG system with both the two- and three-dimensional Euler equations. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1480758#
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The study of active scalars, i.e., scalars that influence the
advecting velocity field itself, is of considerable interest
both from a practical and theoretical viewpoint. In two
dimensions„2D…, the vorticity is a classic example of an
active scalar and its properties have been well studied in
literature. Our aim is to get an understanding of active
scalars which are coupled to the velocity field in different
ways „as compared to the vorticity…. For this we look at
the potential temperature „PT… in a system of equations
called the surface quasigeostrophic„SQG… equations. Not
only do the SQG equations have geophysical relevanc
they actually have a strong relation to the full three-
dimensional „3D… Euler equations. In a sense the PT in
the SQG system acts as a ‘‘bridge’’ from 2D to 3D turbu-
lence. We report on a variety of geometrical and statisti-
cal properties of the PT and of fields which are functions
of the PT gradient. Furthermore, a broader aim of the
paper is to compare and contrast these properties with
existing results on relevant fields in 2D and 3D turbu-
lence.

I. INTRODUCTION

In the quasigeostrophic~QG! framework,1 a simplifica-
tion of the Navier–Stokes equations for describing the m
tion of a stratified and rapidly rotating fluid in a 3D domai
there are two classes of problems that immediately com
attention. The first~Charney type! are the ones where atten
tion is focused on the interior of the domain; the temperat

a!Electronic mail: jai@geosci.uchicago.edu
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is uniform along the boundaries and they play no dynam
role in the evolution of the system. The other class~Eady
type! of problems lead to the surface quasigeostrop
~SQG! equations. The potential vorticity in the 3D interior
forced to be zero and the dynamical problem is controlled
the evolution of the potential temperature at the 2D bou
aries. Working with a single lower boundary~assuming all
fields to be well behaved asz→`!, the equations making up
the SQG system can be expressed as2,3

] tu1ui] iu5Dtu50, z50,

u5]zc5~2D!1/2c,

where

¹2c50, z.0 and u5¹'c. ~1!

Here u is the potential temperature~it is a dynamically
active scalar due to the coupling ofu to c!, c is the geo-
strophic streamfunction,u the geostrophic velocity,¹'

[(2]y ,]x), D is the horizontal Laplacian,¹2 is the full 3D
Laplacian, the operator (2D)1/2 is defined4 in Fourier space
via (2D)1/2c(k)5ukuĉ(k) and i 5x,y. Recall that the 2D
Euler equations~for an incompressible fluid! in vorticity
form are

] tj1ui] ij5Dtj50,
~2!

j5Dc with u5¹'c,

wherej is the vertical component vorticity. The similarity i
the evolution equations foru and j has been explored in
detail by Constantin, Majda, and Tabak.4,5 It can be seen tha
the structure of conserved quantities in both equations is
actly the same. To be precise, just asf (j),*cj are conserved
© 2002 American Institute of Physics
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by the 2D Euler equations similarlyf (u),*cu are conserved
in the SQG system. The basic difference in the abo
mentioned two systems is the degree of locality of the ac
scalar. For the 2D Euler equations the free space Gre
function behaves as ln(r) implying a 1/r behavior for the
velocity field due to point vortex at the origin. In contrast,
the SQG equations the free space Green’s function has
form 1/r implying a much more rapidly decaying 1/r 2 veloc-
ity field due to a point ‘‘PT vortex’’ at the origin.2 Or, in
Fourier space one hasĵ5uku2ĉ and û5ukuĉ for the 2D Eu-
ler and SQG equations, respectively.5 Hence the nature o
interactions is much more local in the SQG case as comp
to the 2D Euler equations.

Studying the properties of active scalars with differe
degrees of locality would be an interesting question in
own right6 but the specific interest in the SQG equatio
comes from an analogy with the 3D Euler equations. T
can be seen by a comparison with the 3D Euler equatio
which in vorticity form read

FDv

Dt G j

5] iv
jv i , ~3!

wherev is a divergence free velocity field,v~5“Ãv! is the
vorticity andi , j 5x,y,z. IntroducingV5“

'u, a ‘‘vorticity’’
like quantity for the SQG system which satisfies@differenti-
ating Eq.~1! and using incompressibility#

FDV

Dt G j

5] iu
jVi . ~4!

Identifying V in Eq. ~4! with v in Eq. ~3! it can be seen4 that
the level sets ofu are geometrically analogous to the vort
lines for the 3D Euler equations. Similar to the question o
finite time singularity in the 3D Euler equations~which is
thought to be physically linked to the stretching of vort
tubes!, in the SQG system one can think of a scenario wh
the intense stretching~and bunching together! of level set
lines during the evolution of a front leads to the developm
of shocks in finite time. The issue of treating the SQG syst
as a testing ground for finite time singularities has genera
interest4,5,7–9 in the mathematical community and the read
is referred to the aforementioned papers for details regar
this issue.

In view of the similarities between the SQG and 2
Euler equations and the level set stretching analogy with
3D Euler system, it is natural to inquire into the statistic
geometrical properties of the SQG active scalar within
appropriately defined ‘‘inertial range.’’ The broad aim is
compare these properties with the large body of work av
able for the 2D and 3D Euler equations. In Sec. II we exa
ine the PT field via global@power spectrum, structure func
tions, (b,g(b)) spectrum# and local ~wavelets! methods.
One of the few rigorous estimates that exist in fluid turb
lence is that for the level set dimensions. The extraction
these dimensions and their agreement with analytical bou
is demonstrated. Section III is devoted to the examination
the dissipation field, the generalized dimensions of a mea
based upon the dissipation field are calculated and c
mented upon. In Sec. IV we focus our attention on the g
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dient fields, a simple derivation of the relation between
variety of scaling exponents is presented, and the underly
assumptions are clearly stated. The failure of the cancella
exponent is demonstrated and a simple example is prese
so as to put some of the ideas in perspective.

II. THE POTENTIAL TEMPERATURE FIELD

A. The power spectrum and the structure functions

A pseudo-spectral technique was employed to solve
~1! numerically on a 204832048 grid. Linear terms are
handled exactly using an integrating-factor method, and n
linear terms are handled by a third-order Adams–Bashfo
scheme~fully de-aliased by the 2/3 rule method!. The calcu-
lations were carried out for freely decaying turbulence. T
initial conditions consisted of a large-scale random field, s
cifically a random-phase superposition of sinusoids with to
wave number approximately equal to 6, in units where
gravest mode has unit wave number. Potential tempera
variance is dissipated at small scales byn¹2u diffusion.
Based on the typical velocityU and scaleL of the initial
condition, one may define a Peclet numberUL/n. The cal-
culations analyzed here were carried out for a Peclet num
of 2500. After a short time, the spectrum develops a disti
inertial range. As time progresses, energy andu variance are
dissipated at small scales, the amplitude decreases, an
effective Peclet number also decreases. After sufficient ti
the flow becomes diffusion-dominated and the inertial ran
is lost. Analysis of other cases, not presented here, indic
that the results are not sensitive to the time slice or the Pe
number, so long as the Peclet number is sufficiently large
the time slice is taken at a time when there is an extens
inertial range.

The mean one-dimensional~1D! power spectra from dif-
ferent stages of evolution can be seen in Fig. 1. As these
decaying simulations the structure in the PT field is slow
dying out. The resulting increase in smoothness of the
field can be seen via the roll off of the spectrum during t
later stages. In spite of this a fairly clean power law is visib
for a sizable ‘‘inertial range’’~other runs with large scale
initial conditions possessing various amounts of energy sh
similar behavior!. We choose to concentrate on the particu
stage which has the largest inertial range. The 2D po
spectrum for this stage can be seen in Fig. 2 and a snap
of the PT field itself can be seen in Fig. 3. Interestingly t
2D power spectrum seems to roll off at larger wave numb
as compared to the 1D spectrum. In this stage the spe
slope ~from the 1D spectra! between the scales 256 and
~the scales are in terms of grid size! is '22.15 ~the other
runs also showed slopes steeper than22!. The slope from
the 2D spectrum is'22.11 ~due to the early roll off of the
2D spectrum, this slope is extracted between the scales
and 8!. Previous decaying simulations8 obtained values nea
22 and seem to be consistent with our observations. A sl
as steep as this suggests that the field being examine
smoother than expectations from a similarity hypothe
~which yields a25

3 slope3!. A closer look indicates~Fig. 3!
that the field is composed of a small number of ‘‘cohere
structures’’ superposed upon a background which has a
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FIG. 1. Power spectrum of the PT
field for a variety of stages. The
dashed line~extracted from the stage
which has the largest inertial range!
has a slope of22.15.
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mentary structure consisting of very fine scales. This imm
diately brings to mind the studies on vorticity in decaying 2
turbulence10–12 wherein a similar coherent structur
background picture was found to exist. Further analysis
dicated that the vorticity field possessed normal sca
whereas a measure based upon the gradient of the vor
-

-
g
ity

~precisely the enstrophy dissipation! was multifractal. To
proceed in this direction we introduce the generalized str
ture functions of orderqPR1,

Sq~r !5^uu~x1r !2u~x!uq&. ~5!

Here^•& represents an ensemble average. The directiona
r
l
f

FIG. 2. The 2D power spectrum fo
the stage with the largest inertia
range. The solid line has a slope o
22.11.
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FIG. 3. Snapshot of the PT field which
showed the largest inertial range.
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pendence is suppressed due to the assumed isotropy o
PT field. Scaling behavior in the field implies that one c
expect the generalized structure functions to behave as,13

Sq~r !5C1~q!uDu~L1!uqS r

L1
D zq

, r 1<r<L1 ~6!

wherezq are the generalized scaling exponents,C1(q) is of
order unity for allq, uDu(L1)u is the absolute value of th
difference inu over a scaleL1 . r 1 andL1 are the inner and
outer scales~8 and 256, respectively! over which the power
law in the spectrum was observed.

If the field being examined is smooth at a scaler then the
gradient at this scale would be finite and as a conseque
zq5q ~due to the domination of the linear term in the Tayl
expansion about the point of interest!, i.e., the scaling would
be trivial. Conventionally normal scaling is a term reserv
for linear zq and any nonlinearity inzq is referred to as
anomalous scaling. In 2D turbulence the velocity field
known to be smooth for all time if the initial conditions a
smooth14 and hence15 zq(velocity)5q. Also, as mentioned
from the analysis of the vorticity field10 the scaling expo-
nents for the vorticity structure functions were found to d
pend onq in a linear fashion. Plots of log(Sq(r)) vs log(r) for
the PT can be seen in the upper panel of Fig. 4. In all ca
the scaling is valid up tor;128, using these plots we ex
tractedzq , which are presented in the lower panel of Fig.
It is seen that the scaling is anomalous and in fact a best fi
the scaling exponents is of the formzq5AqB, q.0 with B
50.82.

For the special case ofq52, one can in principle relate
the scaling exponentz2 to the slope of the power spectru
~n! via16 n52(11z2). This relation is only valid for23
,n,21 ~note that this does not prevent the spectral slo
from being steeper than23; it just implies thatz2 saturates
the

ce
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.
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at 2 for smooth fields and the particular relation betweenz2

and n breaks down!. In our casez251.05 so the predicted
spectral slope isn522.05, which is near the observed me
value of 22.15 ~or 22.11 from the 2D spectrum!. Even
though the scaling exponents give an idea of the roughn
in the field~anomalous scaling implying differing degrees
roughness! there is a certain unsatisfactory aspect about
structure functions, namely, there is no estimate of ‘‘ho
much’’ of the field is rough. Section II B aims to address th
very issue.

B. The „b,g „b…… spectrum

In scaling literature the roughness of a field is specifi
by means of an exponentb ~.0! defined as17

uu~x1r !2u~x!u;ur ub~x!. ~7!

Hereb is a function of position and it refers to the fact th
the derivative ofu will be unbounded asr→0 if b,1. As
mentioned previously there is a lower scale associated w
the problem so technically nothing is blowing up and in e
fect b,1 represents the regions where the derivative will
large as compared to the rest of the field. Note thatu itself
cannot be singular due its conserved nature. The focus i
whether an initially smoothu field becomes rough so as t
cause the gradient fields to experience a singularity. I
clear that Eq.~7! is by itself of not much use in characteriz
ing u ~asb depends upon position!, in fact a global view of
the specific degrees of roughness ofu can be attained via the
(b,g(b)) spectrum which we introduce next.

An iso-b set is defined as the set of allx’s whereb(x)
5b andg(b) is the dimension@to be preciseg(b) should be
viewed in a probabilistic fashion16# of an iso-b set. The di-
mensions of iso-b sets are derived by Frisch.18 Briefly, at a
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FIG. 4. Upper panel: log(Sq(r)) vs
log(r) for different values ofq. Lower
panel: Scaling exponents for the P
field ~1! and the linear scaling with
bmin andbmax.
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scaler the probability of encountering a particular value ofb
is proportional tor d2g(b) ~whered52 for the 2D PT field
and d51 for 1D cuts of the PT field!. By using a steepes
descent argument in the integral for the expectation valu
uu(x1r )2u(x)uq one obtain16,18

zq5min
b

@qb1d2g~b!#

or

g~b!5max
q

@qb1d2zq#. ~8!

Hence givenzq for a fixedq5q* using the first part of Eq.
~8!,

q* 5
dg~b!

db
. ~9!

Denoting the value ofb for which Eq.~9! is satisfied by
b* we have

g~b* !5d1q* b* 2zq
*
. ~10!

Notice that, as the structure functions involve moments w
positive q, they only pick outb’s such thatb,1 andg(b)
,d. The (b,g(b)) spectrum seen in Fig. 5 hints at a hie
archy in roughness of the PT field. From the calculations
see thatbP@0.26,0.6#. In Fig. 4 along withzq we have plot-
ted the lines corresponding tozq5qbmin andzq5qbmax. As
is expected these lines straddle the actual scaling expon
For smaller values ofq the scaling exponents are close
qbmax asbmax has the largest associated dimension wher
for higher values ofq the scaling exponents reflect th
roughest regions and hence tend towardqbmin . Note that
from Eqs. ~9! and ~10! the approximationzq5AqB, B,1,
of

h

e

ts.

s

q.0 implies thatb becomes large andg(b)→d asq→0. In
essence the picture that emerges is that even thoughu ap-
pears to become rough~with differing degrees of roughness!,
in fact, it is the smooth regions that occupy most of t
space.

C. The roughness of u : A qualitative local view

All of the previous tools, the power spectrum, th
(b,g(b)) spectrum, and the structure functions extracted
formation in a global sense. To get a picture of the act
positions where the signal may have unbounded derivati
and to get a qualitative feel of the spareseness of these
gions, one has to determine the local behavior of the sig
in question. Recently the use of wavelets has allowed
identification of local Holder exponents in a variety of si
nals. The Holder exponents are extracted by a techni
known as the wavelet transform modulus maxima~WTMM !
method.19–22 The modulus maxima refers to the spatial d
tribution of the local maxima~of the modulus! of the wavelet
transform. In a crude sense the previous methods used
semble averages of the moments of differences inu(x) as
‘‘mathematical microscopes’’ whereas in the wavelet meth
it is the scale parameter of the wavelet transform that p
forms this task.

By using wavelets whose higher moments vanish o
can detect singularities in the higher order derivatives of
signal being analyzed.22 Our previous results indicate tha
the PT field becomes rough, i.e., the first derivatives of
PT field should be unbounded. Hence, the particular wav
we use is the first derivative of a Gaussian whose first m
ment vanishes,19 i.e., it picks up points where the signal be
comes rough. The wavelet transform of a 1D cut of the
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FIG. 5. The (b,g(b)) spectrum.
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field can be seen in Fig. 6. The cone-like features imply
presence of a rough spot.22 The modulus maxima lines ar
extracted from this transformed field and can be seen in
7. The value of the local Holder exponent can be extrac
via a log plot of the magnitude of a particular maxima line22

In essence, the presence of the cones in the wavelet tr
form indicate roughness in the PT field and the WTMM lin
e

g.
d

ns-

locate the positions of the rough spots. However, a clo
look ~the lower panel of Fig. 7! suggests,qualitatively, that
the rough regions are sparsely distributed~for example, com-
paring with Fig. 8 in Arneodoet al.20!. This goes along with
the observation in Sec. II B that the rough regions were n
space filling. In contrast, it has been found20,21,23 that the
local Holder exponents (h(x)) associated with a 1D cut o
t
-

s

FIG. 6. Upper panel: A random 1D cu
of the PT field. Lower panel: Its wave
let transform~the analyzing wavelet is
the first derivative of a Gaussian!, the
cone-like features indicate roughnes
in the analyzed signal.
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the velocity field in 3D turbulence satisfy20.3<h(x)<0.7
for almost allx ~the peak of the histogram being at1

3! imply-
ing that the velocity field in 3D turbulence is very rough
has unbounded first derivatives at almost all points.

D. The dimension of level sets

Apart from being physically interesting, the level s
~iso-u contour! dimensions provide another link to the roug
ness of the scalar field. As the initial condition was a smo
2D field, initially, any given level set~Eu0

for u5u0! is a
non-space-filling curve, i.e., the level set dimensi

FIG. 7. ~Color! Upper panel: The wavelet transform modulus maxima lin
The lower panel is a zoom into a particular section of the upper panel,
qualitatively indicates the sparseness of the rough spots. A log plot of
magnitude of the maxima line yields the local Holder exponent.
h

(D(Eu0
)) is one. In the case of 3D turbulence there ex

analytical estimates of the scalar level set dimension24

These estimates are seen to be numerically satisfied by a
of fields ~both passive and active! in isotropic 3D and mag-
netohydrodynamic turbulence.25 It must be emphasized tha
these estimates come directly from the equations of ev
tion and are much more powerful than the phenomenolog
ideas we have been working with so far. The actu
calculation24,26 is of the area of an isosurface contained in
ball of specified size, given a Holder condition on the velo
ity field,

uu~x1y,t !2u~x,t !u<ULS y

L D zu

. ~11!

This area estimate leads to the bound

D~Eu!<2.51
zu

2
. ~12!

The bound in Eq.~12! is expected to be saturated26 above a
certain cutoff scale. A valid extrapolation27 for the level sets
of PT in the SQG system readsD(Eu)<1.51(z1)/2, where
z1 is given by Eq.~6! due to the equality of the scalin
exponents for the velocity field and the PT in the SQG s
tem.

In passing we mention that the analytical estimates
for the Hausdorff dimension whereas practically we comp
the box counting dimension. We performed calculations fo
variety of nominal~i.e., near the mean! level sets and Fig. 8
shows the log–log plots used in the calculation of the b
counting dimension. As is the case for 3D25,24 there appears
to be a crossover inD(Eu), we find that even though the
dimension undergoes a change, the fractal nature seem

.
is
e

is

FIG. 8. Log(N(r )) vs log(r) for three
different level sets. The dashed line
the best fit for 4<r<60, the solid line
is the best fit for 64<r<200. The box
counting dimensions are~1.32, 1.8!,
~1.33, 1.77!, and ~1.27, 1.64! for the
small and larger regions for the three
level sets, respectively.
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persist at smaller scales. For smallr, D(Eu)'1.3 whereas
for larger values ofr we find D(Eu)'1.74 ~see the caption
of Fig. 8 for details on the actual values ofr!. From our
previous calculationsz150.57, hence the analytical predic
tion is D(Eu)<1.785. Furthermore, as the bound is expec
to be saturated above the cutoff we see that the comp
value of D(Eu) for large r is quite close to the analytica
prediction. In all, apart from satisfying the analytically pr
scribed bounds~and indirectly indicating roughness in the P
field!, the level set dimensions indicate that initially no
space-filling level sets acquire a fractal nature in finite tim

III. GRADIENT FIELD CHARACTERIZATION

The effect of the inferred roughness in the PT field w
as mentioned previously, be reflected in the singular na
of the gradient fields. In this section we proceed to exam
a variety of fields which are functions of the PT gradie
The aim is to see if we can actually detect the expec
singularities, and if so, to characterize them.

A. The dissipation field

A physically interesting function of the gradient field
the PT dissipation, as it is connected to the variance of
PT field. The equation for the dissipation ofu can be ob-
tained by multiplying Eq.~1! by u and averaging over the
whole domain,

]^u2&
]t

522n ^~¹u!2&. ~13!

Heren(¹u)2 is the dissipation field. Now consider the qua
tity m(x,r ),

m~x,r !5
1

r d E
B~x,r !

n~¹u!2ddx. ~14!

Physically this is the average dissipation in a ball of sizr
centered atx. Due to the smoothing via integration it is ex
pected thatm(x,r ) will be fairly well behaved through mos
of the domain with intermittent bursts of high values conce
trated in the regions where the PT field is rough. The mu
fractal formalism16,28,29provides a convenient way to cha
acterize such ‘‘erratic’’ or singular measures. The techniqu28

consists of constructing a measure~m with suitable normal-
ization! and using its moments to focus on the singularit
of the measure. The domain in which the field is defined
partitioned into disjoint boxes of sizer and it is postulated
~see, e.g., Ref. 30! that moments ofm will scale as

( m~x,r !q;r tq2qd, ~15!

where the sum goes over all the boxes into which the dom
was partitioned. Consider the set of points where the m
sure scalesr a and denote the dimension of this set byf (a)
~again a probabilistic view is more precise!. By similar con-
siderations as for theg(b) spectrum it can be seen that16

tq5min
a

~qa2 f ~a!!, f ~a!5max
q

~qa2tq!. ~16!

The function tq is further related to the generalize
dimensions31 via Dq5tq /(q21). Practically29 a log–log
d
ed

.

re
e
.
d

e

-
i-

s
s

in
a-

plot of the ensemble average ofm(x,r )q for different values
of r gives (Dq2d)(q21). By knowing (q,Dq) one can use
Eq. ~16! to obtain the (a, f (a)) spectrum.

Again, as we expect the scaling of any physical quan
to be restricted to a range of length scales~sayr a to r b!, it is
preferable to work in terms of ratios ofr /r b wherer b is the
outer scale,r a is the inner scale, andr b>r>r a . In these
terms the generalized dimensions can be expressed as29

^m~r !q&5C2~q!~m~r b!q!S r

r b
D ~Dq2d!~q21!

, ~17!

wherem(r b) is the measure on the outer scale andC2(q) is
order unity for all q @a similar relation would hold if we
replaced the~m(r b)q# on the right-hand side bŷm(r )&q but
with different C2(q)’s!. For r ,r a the dissipation field is
assumed to have become smooth via the action of visco
The f (a) spectrum and the generalized dimensions for
dissipation field can be seen in Fig. 9. The nontrivial beh
ior of the generalized dimensions demonstrates that the
sipation field is singular~with different singularity strengths!
within these scales. Also, from the calculations we find t
f (1),2, which acts as a check that the dissipation in a fin
volume is bounded@as f (1) is the dimension of the suppo
of the singular regions#.32

B. General considerations

The gradient squared nature of the dissipation field
plied that it was positive definite. In principle one could co
ceive of fields which possess singularities but are not s
definite. In order to characterize this possible sign indefin
ness Ott and co-workers studied33,34 sign singular measure
and a related family of exponents called the cancellation
ponents (kq). It is immediately clear that singular nature is
prerequisite for the phenomenon of cancellation, the rea
being that a nonsingular field is bounded and we can alw
add a constant so as to make the field positive definite
hence eliminate cancellation. Consider a sign indefinite
field u(x) ~which will later be interpreted as a 1D cut of th
PT field! and construct

m8~x,r !5S 1

r Ex

x1rU du

dx8
Udx8D , ~18!

h~x,r !5U1r Ex

x1r S du

dx8Ddx8U. ~19!

As m8 is defined for the magnitude of the gradient field w
can postulate@similar to Eq.~17! for m#

^m8~r !q&5C3~q!~m8~r d!q!S r

r d
D ~Dq82d!~q21!

. ~20!

Hered51 andDq8 are the generalized dimensions associa
with m8. As usual the scaling is restricted to a range of sca
(r c,r ,r d) and r c is the scale below whichm8 appears
smooth. Formally, the entityh after suitable normalization is
a sign singular measure~see Ottet al.33 for a rigorous defi-
nition!. It was conjectured33 that the sign singular entityh
might also possess scaling properties in analogy withm8,
implying
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FIG. 9. Thef (a) spectrum andDq for
the dissipation field.
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^h~r !q&5C4~q!~r !2kq8, r .r cc . ~21!

Using Eq.~20! we can express Eq.~21! as

^h~r !q&;^m8~r !q&~r !2kq, r d.r .r cc>r c , ~22!

wherekq5kq81(Dq82d)(q21) andr cc is the lower oscilla-
tory scale below which the derivative does not oscillate.
prefer to callkq from Eq. ~22! the cancellation exponents a
they directly reflect the difference in the scaling properties
du/dx and udu/dxu.

A priori there is no justification in assuming that th
scale at which cancellation ceases (r cc) is the same as the
scale at whichm8 becomes smooth (r c). Consider the ex-
ample where the derivative is a discrete signal composed
train of delta functions~zero elsewhere! where the minimum
separation between the delta functions isl. Furthermore let
us assign the sign of the delta functions in a random fash
In this case ther cc5 l , in fact, k150.5 due to the random
distribution of the signs. But as the delta functions are s
ported at points we haver c→0. As an aside we point out tha
if there is a maximum scale of separation between the d
functions ~say L! then at scales greater thanL we will see
Dq85d for m8. The reason for pointing this out is to give
feel for fields that exhibit scaling, on one hand smooth fie
have Dq85d whereas on the other extreme random fie
with small correlations also haveDq85d ~at scales larger than
their correlation lengths!. Fields with nontrivial scaling over
a significant range are in effect random but with large cor
lation lengths. The reader is referred to Marshaket al.35 for a
detailed examination of multiplicative processes and the
sulting characterization by structure functions and gene
ized dimensions.

In order to get a unified picture of scaling in both th
gradient and the field itself there have been attempts~e.g.,
e

f

f a

n.

-

ta

s
s

-

-
l-

Refs. 13 and 17! to link zq , kq , andDq8 to each other. The
view that seems to have emerged is that there exist sim
relations linking the various exponents and that these r
tions are valid under very general conditions. We presen
alternate derivation of some of these relations which ma
the implicit assumptions explicit. Proceeding from Eq.~22!,
assuming thatdu/dx has integrable singularities we obtain

^uu~x1r !2u~x!uq&5^m8~r !q&r q2kq. ~23!

Substituting from Eq.~20! and on comparing with Eq.~6! we
get

zq5~Dq82d!~q21!1q2kq . ~24!

Writing Eq. ~23! for q51 we have

^uu~x1r !2u~x!u&5^m8~r !&r 12k1, ~25!

which yieldsk11z151. Now if we make a strong assump
tion regarding the uniform nature of the cancellation, it
possible to claim that Eq.~25! holds not only in average bu
on every interval, i.e.,

uu~x1r !2u~x!u5m8~r !r 12k1. ~26!

Raising this to theqth power and performing an ensemb
average yields

^uu~x1r !2u~x!uq&5^m8~r !q&r q~12k1!, ~27!

which implies

zq5~Dq82d!~q21!1q~12k1!. ~28!

The implications of Eq.~28! are quite severe in that it show
zq to be dependent onDq8 and the knowledge of only the firs
cancellation exponent allows the derivation of one from
other. In general the scaling exponents ofu and the general-
ized dimensions ofm8 provide exclusive information. It is
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FIG. 10. Upper panel: Log(^m8(r )q&)
vs log(r) for q51:10, Lower panel:
The generalized dimensions form8.
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s is
only in the presence of integrable singularities that one
link the two via Eq.~24!, furthermore the stronger relatio
@Eq. ~28!# is valid under the added assumption of unifor
cancellation.

C. The gradient of the PT and its absolute value

We proceed to check if scaling is observed~as postu-
lated! for the PT field gradient and its absolute value a
whether one can extract the aforementioned exponents
the upper panel of Fig. 10 we show the log–log plots
^m8(r )q& vs r for different q. The scaling relations certainl
appear to hold true~which was expected as they held for th
dissipation field!. The generalized dimensions form8 can be
seen the lower panel of Fig. 10. On the other hand the s
ing for ^h(r )& seen in Fig. 11 fails to exhibit a power law i
r. Hence there is no meaningful way of extracting the c
cellation exponents as they have been defined. Unfortuna
this implies that the relations derived in Sec. III B@Eqs.~24!
and~28!# cannot be used in this situation. In spite of this, w
can see that asr decreases the tangent to log(^h(r)&) has a
smaller slope which is consitent with the existence of a
cillatory cutoff at small scales.

IV. CONCLUSION AND DISCUSSION

In summary, we have found that the PT field in the SQ
equations appears to become rough within a specified ra
of scales. Moreover, not only is there a heirarchy in the
gree of roughness, the roughness is distributed sparsely
qualitative sense. These conclusions are based on a co
nation of factors, namely, the algebraic power spectru
anomalous scaling in the structure functions, a nontriv
(b,g(b)) spectrum, the nature of the WTMM map, and t
n

In
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-
ly

-

ge
-
a

bi-
,
l

wrinkling of the PT level sets. The roughness in the PT fie
is expected to have an adverse effect on functions of
gradient field. This expectation is borne out in the multifra
tal nature of the dissipation field. Also, the singular nature
the gradient field in combination with its sign indefinitene
led us to examine a sign singular measure based upon
gradient field. The failure to observe scaling in the sign s
gular measure serves, in our opinion, as a reminder that m
scaling arguments are postulated at a phenomenological
and the underlying basis of why scaling is observed in
first place is a fairly subtle and unsettled issue. Similarly
simple derivation of the relation between the variety of sc
ing exponents makes explicit some of the assumptions
are required for the validity of similar relations proposed
earlier studies.

Regarding the more general question we posed in
very beginning of this paper, i.e., where does the SQG ac
scalar stand with respect to both 2D and 3D turbulence,
have the following comments. With respect to the vorticity
the 2D Euler equations the corresponding quantity in
SQG system is the PT. The coherent structure/fine ba
ground nature of the vorticity field10–12 carries over qualita-
tively to the PT field. The vorticity structure functions whic
showed normal scaling in the 2D Euler system10 crossover to
anomalous scaling in the SQG system. Our conjecture is
the stronger local interactions in the SQG system are resp
sible for this anomalous scaling. In both these systems
vorticity and PT, respectively, are conserved quantities
hence any singularities one might experience are actuall
the gradient fields, as is seen in the multifractal nature of
enstrophy dissipation in the Euler system10 and the PT dissi-
pation in the SQG system.

In the 3D Euler case, the PT from the SQG equation
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FIG. 11. log(̂h (r)&) vs log(r).
gh
s
ce
a
c

e
th

is
o
D
en

n
u
cit
p

th
e
d
o

e

u
di-
o
w
Th
hin

ere
nets
ich

ess,

ual
au-
a
P.

5

the
E

asi-

cal

the

hic

ent

ive

a

nal
analogous to the velocity field and¹'W u from SQG corre-
sponds to the vorticity of the 3D Euler equations. The rou
ness of the PT field is similar to the postulated roughnes
the velocity field in the inertial range, a subtle differen
being that the roughness in the PT appears to be sp
whereas indications are that the roughness in the 3D velo
field is present almost everywhere.20,21,23 We reemphasize
that in both cases the roughness is restricted to a rang
scales, i.e., no claim is made for an actual singularity in
corresponding gradients. Similarly the anomalous scaling
the PT follows that of the velocity field in 3D but again it
not as strong as in the 3D case. The general the
developed24 for the deformation of scalar level sets in the 3
case is seen to carry over to the SQG equations. In ess
the SQG equations follow the 3D Euler equations but in
somewhat weaker sense. This ‘‘weakness’’ is clearly ma
fested in the behavior of the gradients. In the 3D Euler eq
tions a sign singular measure constructed from the vorti
field shows good scaling properties and a cancellation ex
nent can be meaningfully extracted,33 whereas in the SQG
equations a similarly constructed entity lacks scaling.

The results presented in this paper have been for
most part diagnostic, in that they characterize the natur
the roughness of the potential temperature field in SQG
namics. Although we have exhibited anomalous scaling
the potential temperature fluctuations, we do not hav
theory accounting for the observed form ofzq . Arriving at
such a theory will be a major challenge for future work. O
results point efforts in the direction of considering the
chotomy between smooth fields within large organized v
tices, and a rather sparse set at the boundaries of and bet
vortices which exhibits a greater degree of roughness.
diagnostic results also suggest a means for distinguis
-
of

rse
ity

of
e
of

ry

ce
a
i-
a-
y
o-

e
of
y-
f
a

r

r-
een
e
g

between SQG and Euler dynamics in Nature, in cases wh
only a tracer field can be observed, as in the gas giant pla
~notably Saturn, Jupiter and Neptune, which exhibit a r
variety of turbulent patterns!. SQG dynamics should yield
anomalous scaling corresponding to sparse roughn
whereas Euler dynamics should yield normal scaling.
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