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We study the statistical and geometrical properties of the potential tempe(RtDrdield in the

surface quasigeostrophiSQQG system of equations. In addition to extracting information in a
global sense via tools such as the power spectrum, the g-beta spectrum, and the structure functions
we explore the local nature of the PT field by means of the wavelet transform method. The primary
indication is that an initially smooth PT field becomes rougfthin specified scalgsthough in a
qualitatively sparse fashion. Similarly, initially one-dimensional iso-PT contours PT level sets

are seen to acquire a fractal nature. Moreover, the dimensions of the iso-PT contours satisfy existing
analytical bounds. The expectation that the roughness will manifest itself in the singular nature of
the gradient fields is confirmed via the multifractal nature of the dissipation field. Following earlier
work on the subject, the singular and oscillatory nature of the gradient field is investigated by
examining the scaling of a probability measure and a sign singular measure, respectively. A
physically motivated derivation of the relations between the variety of scaling exponents is
presented, the aim being to bring out some of the underlying assumptions which seem to have gone
unnoticed in previous presentations. Apart from concentrating on specific properties of the SQG
system, a broader theme of the paper is a comparison of the diagnostic inertial range properties of
the SQG system with both the two- and three-dimensional Euler equation200@ American

Institute of Physics.[DOI: 10.1063/1.1480758

The study of active scalars, i.e., scalars that influence the
advecting velocity field itself, is of considerable interest
both from a practical and theoretical viewpoint. In two
dimensions (2D), the vorticity is a classic example of an
active scalar and its properties have been well studied in
literature. Our aim is to get an understanding of active
scalars which are coupled to the velocity field in different
ways (as compared to the vorticity). For this we look at
the potential temperature (PT) in a system of equations
called the surface quasigeostrophi€SQG) equations. Not
only do the SQG equations have geophysical relevance
they actually have a strong relation to the full three-
dimensional (3D) Euler equations. In a sense the PT in
the SQG system acts as a “bridge” from 2D to 3D turbu-
lence. We report on a variety of geometrical and statisti-
cal properties of the PT and of fields which are functions
of the PT gradient. Furthermore, a broader aim of the
paper is to compare and contrast these properties with
existing results on relevant fields in 2D and 3D turbu-
lence.

I. INTRODUCTION

In the quasigeostrophitQG) framework! a simplifica-

tion of the Navier—Stokes equations for describing the mo-
tion of a stratified and rapidly rotating fluid in a 3D domain,

is uniform along the boundaries and they play no dynamical
role in the evolution of the system. The other cld&ady
type) of problems lead to the surface quasigeostrophic
(SQQ equations. The potential vorticity in the 3D interior is
forced to be zero and the dynamical problem is controlled by
the evolution of the potential temperature at the 2D bound-
aries. Working with a single lower boundagssuming all
fields to be well behaved as—«), the equations making up
the SQG system can be expresset®as

3,0+u'9,6=D,0=0, z=0,

0=d,p=(—A)"2y,
where

V2y=0, z>0 andu=V'y.

@

Here 6 is the potential temperatur@ is a dynamically
active scalar due to the coupling éfto ¢), ¢ is the geo-
strophic streamfunctionu the geostrophic velocityV+*
=(—dy,dy), Ais the horizontal Laplaciary? is the full 3D
Laplacian, the operator{A)*?is defined in Fourier space
via (—A)Y2y(k)=|k| (k) andi=x,y. Recall that the 2D
Euler equations(for an incompressible fluidin vorticity
form are

FE+U9=D£=0,

E=Ay with u=V+ty, &

there are two classes of problems that immediately come to . . o S
attention. The firstCharney typgare the ones where atten- Where¢ is the vertical component vorticity. The similarity in
tion is focused on the interior of the domain; the temperaturdhe evolution equations fo# and £ has been explored in
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detail by Constantin, Majda, and Tabaklt can be seen that
the structure of conserved quantities in both equations is ex-
actly the same. To be precise, justfds), [ ¢ are conserved
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by the 2D Euler equations similarly 6), [ 6 are conserved dient fields, a simple derivation of the relation between the
in the SQG system. The basic difference in the abovevariety of scaling exponents is presented, and the underlying
mentioned two systems is the degree of locality of the activeassumptions are clearly stated. The failure of the cancellation
scalar. For the 2D Euler equations the free space Green&xponent is demonstrated and a simple example is presented
function behaves as If(implying a 1f behavior for the so as to put some of the ideas in perspective.

velocity field due to point vortex at the origin. In contrast, in

the SQG_ equ_atlons the free space Green'’s _functlon has tf”s_* THE POTENTIAL TEMPERATURE FIELD

form 1k implying a much more rapidly decayingrf/veloc-

ity field due to a point “PT vortex” at the origiA.Or, in  A. The power spectrum and the structure functions

Fourier space one has=|k|*y and 6= k| ¢ for the 2D Eu- A pseudo-spectral technique was employed to solve Eq.
ler and SQG equations, respectivelyience the nature of (1) numerically on a 20482048 grid. Linear terms are

interactions is much more local in the SQG case as compargghndled exactly using an integrating-factor method, and non-
to the 2D Euler equations. linear terms are handled by a third-order Adams—Bashforth

Studying the properties of active scalars with differentscheme(fu"y de-aliased by the 2/3 rule methpd he calcu-

degrees of locality would be an interesting question in itsjations were carried out for freely decaying turbulence. The
own righf but the specific interest in the SQG equationsinitial conditions consisted of a large-scale random field, spe-
comes from an analogy with the 3D Euler equations. Thigjfically a random-phase superposition of sinusoids with total
can be seen by a comparison with the 3D Euler equationgyave number approximately equal to 6, in units where the

which in vorticity form read gravest mode has unit wave number. Potential temperature
Dol variance is dissipated at small scales by?¢ diffusion.
—| =dvl, ©) Based on the typical velocity and scaleL of the initial
Dt condition, one may define a Peclet numh#Hr/v. The cal-

culations analyzed here were carried out for a Peclet number
of 2500. After a short time, the spectrum develops a distinct
inertial range. As time progresses, energy @ndriance are
dissipated at small scales, the amplitude decreases, and the
effective Peclet number also decreases. After sufficient time,
J . the flow becomes diffusion-dominated and the inertial range
=quVvh 4) s lost. Analysis of other cases, not presented here, indicates
that the results are not sensitive to the time slice or the Peclet
Identifying V in Eq. (4) with @ in Eq. (3) it can be seehthat  number, so long as the Peclet number is sufficiently large and
the level sets ob are geometrically analogous to the vortex the time slice is taken at a time when there is an extensive
lines for the 3D Euler equations. Similar to the question of ainertial range.
finite time singularity in the 3D Euler equatiorie/hich is The mean one-dimensiondlD) power spectra from dif-
thought to be physically linked to the stretching of vortex ferent stages of evolution can be seen in Fig. 1. As these are
tubes, in the SQG system one can think of a scenario wher@lecaying simulations the structure in the PT field is slowly
the intense stretchingand bunching togethgof level set  dying out. The resulting increase in smoothness of the PT
lines during the evolution of a front leads to the developmenfield can be seen via the roll off of the spectrum during the
of shocks in finite time. The issue of treating the SQG systentater stages. In spite of this a fairly clean power law is visible
as a testing ground for finite time singularities has generatetbr a sizable “inertial range”(other runs with large scale
interest>"~%in the mathematical community and the readerinitial conditions possessing various amounts of energy show
is referred to the aforementioned papers for details regardingimilar behavioy. We choose to concentrate on the particular
this issue. stage which has the largest inertial range. The 2D power
In view of the similarities between the SQG and 2D spectrum for this stage can be seen in Fig. 2 and a snapshot
Euler equations and the level set stretching analogy with thef the PT field itself can be seen in Fig. 3. Interestingly the
3D Euler system, it is natural to inquire into the statistical/2D power spectrum seems to roll off at larger wave numbers
geometrical properties of the SQG active scalar within aras compared to the 1D spectrum. In this stage the spectral
appropriately defined “inertial range.” The broad aim is to slope (from the 1D spectiabetween the scales 256 and 8
compare these properties with the large body of work avail{the scales are in terms of grid sjzis ~—2.15 (the other
able for the 2D and 3D Euler equations. In Sec. Il we exam+uns also showed slopes steeper tha?). The slope from
ine the PT field via globalpower spectrum, structure func- the 2D spectrum is=—2.11 (due to the early roll off of the
tions, (8,9(B)) spectrum and local (wavelet$ methods. 2D spectrum, this slope is extracted between the scales 128
One of the few rigorous estimates that exist in fluid turbu-and §. Previous decaying simulatichebtained values near
lence is that for the level set dimensions. The extraction of-2 and seem to be consistent with our observations. A slope
these dimensions and their agreement with analytical boundss steep as this suggests that the field being examined is
is demonstrated. Section Il is devoted to the examination ofmoother than expectations from a similarity hypothesis
the dissipation field, the generalized dimensions of a measur@hich yields a3 slop€). A closer look indicatesFig. 3
based upon the dissipation field are calculated and conthat the field is composed of a small number of “coherent
mented upon. In Sec. IV we focus our attention on the grastructures” superposed upon a background which has a fila-

wherev is a divergence free velocity fieldy(=VXv) is the
vorticity andi,j=x,y,z. IntroducingV=V< 6, a “vorticity”

like quantity for the SQG system which satisf{ekfferenti-
ating Eq.(1) and using incompressibility

DV

Dt
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FIG. 1. Power spectrum of the PT
field for a variety of stages. The
dashed lineg(extracted from the stage
which has the largest inertial range
-4 n has a slope of-2.15.
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mentary structure consisting of very fine scales. This imme{precisely the enstrophy dissipatiomwas multifractal. To
diately brings to mind the studies on vorticity in decaying 2D proceed in this direction we introduce the generalized struc-
turbulencé®=*? wherein a similar coherent structure/ ture functions of ordege "™,

background picture was found to exist. Further analysis in- _ B q

dicated that the vorticity field possessed normal scaling Sa(r)=(l0(x+1) = 6(x)]%. ®)
whereas a measure based upon the gradient of the vorticitsfere(-) represents an ensemble average. The directional de-
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FIG. 2. The 2D power spectrum for
the stage with the largest inertial
range. The solid line has a slope of
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FIG. 3. Snapshot of the PT field which
showed the largest inertial range.
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pendence is suppressed due to the assumed isotropy of the2 for smooth fields and the particular relation betwégn
PT field. Scaling behavior in the field implies that one canand n breaks dowi In our casel,=1.05 so the predicted
expect the generalized structure functions to behavé as, spectral slope is= —2.05, which is near the observed mean
r\ g value of —2.15 (or —2.11 from the 2D spectrum Even
Sq(r):Cl(q)|A‘9(Ll)|q<L_) . risr<L, (6)  though the scaling exponents give an idea of the roughness
1 in the field(anomalous scaling implying differing degrees of

where, are the generalized scaling exponertg(q) is of roughneskthere is a certain unsatisfactory aspect about the
order unity for allg, |A6(L,)| is the absolute value of the structure functions, namely, there is no estimate of “how
difference in@ over a scald_,. r; andL, are the inner and much” of the field is rough. Section Il B aims to address this
outer scaleg8 and 256, respectivelyover which the power Very issue.
law in the spectrum was observed.

If the field being examined is smooth at a saatken the
gradient at this scale would be finite and as a consequenc% The (B.9(p)) spectrum
{q=0q (due to the domination of the linear term in the Taylor In scaling literature the roughness of a field is specified
expansion about the point of intergste., the scaling would by means of an exponegt (>0) defined a¥’
be trivial. Conventionally normal scaling is a term reserved .
for linear {, and any nonlinearity in, is referred to as [60¢+1) =600~ [r [P, @)
anomalous scaling. In 2D turbulence the velocity field isHere 8 is a function of position and it refers to the fact that
known to be smooth for all time if the initial conditions are the derivative ofé will be unbounded as—0 if B<1. As
smootht* and henc® {q(velocity)=q. Also, as mentioned, mentioned previously there is a lower scale associated with
from the analysis of the vorticity field the scaling expo- the problem so technically nothing is blowing up and in ef-
nents for the vorticity structure functions were found to de-fect 8<<1 represents the regions where the derivative will be
pend ong in a linear fashion. Plots of lo§(r)) vs log) for  large as compared to the rest of the field. Note théself
the PT can be seen in the upper panel of Fig. 4. In all casesannot be singular due its conserved nature. The focus is on
the scaling is valid up t@~128, using these plots we ex- whether an initially smootl¥ field becomes rough so as to
tracted{,, which are presented in the lower panel of Fig. 4.cause the gradient fields to experience a singularity. It is
It is seen that the scaling is anomalous and in fact a best fit tolear that Eq(7) is by itself of not much use in characteriz-
the scaling exponents is of the forg‘quqB, g>0 with B ing 6 (as B depends upon positignin fact a global view of
=0.82. the specific degrees of roughnessfafan be attained via the

For the special case @f=2, one can in principle relate (8,9(8)) spectrum which we introduce next.
the scaling exponent, to the slope of the power spectrum An iso-B set is defined as the set of alk where 8(x)
(n) vial® n=—(1+¢,). This relation is only valid for—3 =B andg(p) is the dimensiofto be precisg(B) should be
<n< -1 (note that this does not prevent the spectral slopeiewed in a probabilistic fashidfi of an isof3 set. The di-
from being steeper than 3; it just implies that/, saturates mensions of isq8 sets are derived by Fris¢f.Briefly, at a
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scaler the probability of encountering a particular value®f q>0 implies thatB becomes large angl 8) —d asq— 0. In
is proportional tor9~9() (whered=2 for the 2D PT field essence the picture that emerges is that even thougpbr
andd=1 for 1D cuts of the PT field By using a steepest pears to become roudhwith differing degrees of roughness
descent argument in the integral for the expectation value ah fact, it is the smooth regions that occupy most of the
|6(x+r)—6(x)|% one obtain®1® space.
{g=min[gB+d—-g(B)] L :
B C. The roughness of @: A qualitative local view
or All of the previous tools, the power spectrum, the
_ _ (B,9(B)) spectrum, and the structure functions extracted in-
a(B) mqa>{QB+d Lql- ®  formation in a global sense. To get a picture of the actual

_ ) _ _ positions where the signal may have unbounded derivatives,
Hence givens, for a fixedq=aq, using the first part of Eq. and to get a qualitative feel of the spareseness of these re-

8), gions, one has to determine the local behavior of the signal
dg(B) in question. Recently the use of wavelets has allowed the
Ox ZT- 9) identification of local Holder exponents in a variety of sig-

nals. The Holder exponents are extracted by a technique
Denoting the value oB for which Eq.(9) is satisfied by  known as the wavelet transform modulus maxifarMMm )
Bx we have method'®~?2 The modulus maxima refers to the spatial dis-
9(Bx)=d+ 0y B — L. - (10) tribution of the local maximé&of the mod_ulu};of the wavelet
* transform. In a crude sense the previous methods used en-
Notice that, as the structure functions involve moments wittsemble averages of the moments of difference®(ix) as
positive g, they only pick out8's such that3<1 andg(B) “mathematical microscopes” whereas in the wavelet method
<d. The (8,9(B)) spectrum seen in Fig. 5 hints at a hier- it is the scale parameter of the wavelet transform that per-
archy in roughness of the PT field. From the calculations wdorms this task.
see tha3<[0.26,0.6. In Fig. 4 along with{, we have plot- By using wavelets whose higher moments vanish one
ted the lines corresponding g =0qBmi» and{q=0Bmax- AS  can detect singularities in the higher order derivatives of the
is expected these lines straddle the actual scaling exponentignal being analyzetf. Our previous results indicate that
For smaller values of| the scaling exponents are close to the PT field becomes rough, i.e., the first derivatives of the
0Bmax S Bmax has the largest associated dimension whereaBT field should be unbounded. Hence, the particular wavelet
for higher values ofq the scaling exponents reflect the we use is the first derivative of a Gaussian whose first mo-
roughest regions and hence tend towaydl,,,. Note that ment vanishe&’ i.e., it picks up points where the signal be-
from Egs.(9) and (10) the approximationgq=AqB, B<1, comes rough. The wavelet transform of a 1D cut of the PT
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FIG. 5. The 38,9(B)) spectrum.

field can be seen in Fig. 6. The cone-like features imply thdocate the positions of the rough spots. However, a closer
presence of a rough sptThe modulus maxima lines are look (the lower panel of Fig. 7suggestsqualitatively, that
extracted from this transformed field and can be seen in Fighe rough regions are sparsely distributfxt example, com-

7. The value of the local Holder exponent can be extractegharing with Fig. 8 in Arneodet al2%). This goes along with
via a log plot of the magnitude of a particular maxima lfie. the observation in Sec. Il B that the rough regions were non-
In essence, the presence of the cones in the wavelet transpace filling. In contrast, it has been fodh&?3that the
form indicate roughness in the PT field and the WTMM lineslocal Holder exponentsh(x)) associated with a 1D cut of

PT cut
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FIG. 6. Upper panel: Arandom 1D cut
of the PT field. Lower panel: Its wave-
let transform(the analyzing wavelet is
the first derivative of a Gaussiarthe
cone-like features indicate roughness
in the analyzed signal.
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(D(an)) is one. In the case of 3D turbulence there exist

analytical estimates of the scalar level set dimensffns.
These estimates are seen to be numerically satisfied by a host
of fields (both passive and actiyén isotropic 3D and mag-
netohydrodynamic turbulené@.lt must be emphasized that
these estimates come directly from the equations of evolu-
tion and are much more powerful than the phenomenological
ideas we have been working with so far. The actual
calculatiorf*?®is of the area of an isosurface contained in a
ball of specified size, given a Holder condition on the veloc-

[ | ity field,
l |
y |
Uy, =uD[<UL ] (11
This area estimate leads to the bound
FIG. 7. (Color) Upper panel: The wavelet transform modulus maxima lines. Ju
The lower panel is a zoom into a particular section of the upper panel, this D(E0)<2.5+ ? (12

qualitatively indicates the sparseness of the rough spots. A log plot of the

magnitude of the maxima line yields the local Holder exponent. The bound in Eq(12) is expected to be saturafé@bove a
certain cutoff scale. A valid extrapolatithfor the level sets

the velocity field in 3D turbulence satisfy 0.3<h(x)<0.7 ~ Of PT in the SQG system rea@®(E,)<1.5+({1)/2, where

for almost allx (the peak of the histogram being &timply- ~ ¢1 1S given by Eq.(6) due to the equality of the scaling

ing that the velocity field in 3D turbulence is very rough or exponents for the velocity field and the PT in the SQG sys-

has unbounded first derivatives at almost all points. tem. _ _ _ _
In passing we mention that the analytical estimates are

for the Hausdorff dimension whereas practically we compute

the box counting dimension. We performed calculations for a
Apart from being physically interesting, the level setvariety of nominal(i.e., near the mearevel sets and Fig. 8

(iso-6 contouy dimensions provide another link to the rough- shows the log—log plots used in the calculation of the box

ness of the scalar field. As the initial condition was a SmOOtI’tounting dimension. As is the case for 3B3* there appears

2D field, initially, any given level setE, for 6=6,) is @ to be a crossover iD(E,), we find that even though the

non-space-filling curve, i.e., the level set dimensiondimension undergoes a change, the fractal nature seems to

D. The dimension of level sets

10F = —. 7 T T T T T T T =
28
z
g 6f
4+
1 1 1
1.5 2 25
10-|'~.\.\_| T
T~ FIG. 8. Log(N(r)) vs logf) for three
—~ 8 different level sets. The dashed line is
> the best fit for 4<r <60, the solid line
S 6t is the best fit for 64<r <200. The box
- counting dimensions ar¢l.32, 1.8,
al (1.33, 1.77, and (1.27, 1.64 for the
L I L small and large regions for the three
15 2 25 level sets, respectively.
T = T T
~8r -
z
281
4+
1 1 1
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persist at smaller scales. For smgllD(E,)~1.3 whereas plot of the ensemble average pfx,r)? for different values
for larger values of we find D(E,)~1.74 (see the caption of r gives ©4—d)(q—1). By knowing (@,D,) one can use
of Fig. 8 for details on the actual values of. From our Eg. (16) to obtain the @,f(«)) spectrum.

previous calculationg,=0.57, hence the analytical predic- Again, as we expect the scaling of any physical quantity
tion is D(E,)<1.785. Furthermore, as the bound is expectedo be restricted to a range of length scalesyr, tory), itis
to be saturated above the cutoff we see that the computqateferable to work in terms of ratios ofr, wherer, is the
value of D(E) for larger is quite close to the analytical outer scaley, is the inner scale, and,=r=r,. In these
prediction. In all, apart from satisfying the analytically pre- terms the generalized dimensions can be expres€ed as
scribed boundgand indirectly indicating roughness in the PT ¢ | (Dg-d)(g-1)

field), tr_lg level set d|mens!ons indicate that |p|t|{:1l!y non- (#(f)q>=C2(Q)(M(fb)q)(—)
space-filling level sets acquire a fractal nature in finite time. b

where u(rp) is the measure on the outer scale &y{q) is
order unity for allg [a similar relation would hold if we
replaced the.(ry,)?] on the right-hand side by (r))% but
The effect of the inferred roughness in the PT field will, with different C,(q)’s). For r<r, the dissipation field is
as mentioned previously, be reflected in the singular naturassumed to have become smooth via the action of viscosity.
of the gradient fields. In this section we proceed to examindhe f(«a) spectrum and the generalized dimensions for the
a variety of fields which are functions of the PT gradient.dissipation field can be seen in Fig. 9. The nontrivial behav-
The aim is to see if we can actually detect the expectedor of the generalized dimensions demonstrates that the dis-
singularities, and if so, to characterize them. sipation field is singulafwith different singularity strengths
within these scales. Also, from the calculations we find that
f(1)<2, which acts as a check that the dissipation in a finite
A physically interesting function of the gradient field is volume is boundedlasf(1) is the dimension of the support
the PT dissipation, as it is connected to the variance of thef the singular regions*
PT field. The equation for the dissipation éfcan be ob-
tained by multiplying Eq.(1) by ¢ and averaging over the g. General considerations
whole domain,

3 6?)
ot

: 17

IIl. GRADIENT FIELD CHARACTERIZATION

A. The dissipation field

The gradient squared nature of the dissipation field im-
plied that it was positive definite. In principle one could con-
ceive of fields which possess singularities but are not sign
definite. In order to characterize this possible sign indefinite-
ness Ott and co-workers studféd* sign singular measures
and a related family of exponents called the cancellation ex-

1 51 ponents f). Itis immediately clear that singular nature is a
px.1)= rd fB(X r)”(va) d’x. (14) prerequisite for the phenomenon of cancellation, the reason
' being that a nonsingular field is bounded and we can always
add a constant so as to make the field positive definite and

cente(rjedhak. Due to_"tr;)e ?m(l)Oth"]'?bV'E mtzgrﬁltlon ;‘ IS €X" hence eliminate cancellation. Consider a sign indefinite 1D
pected t ap(x,r_) wiil be Tairly well behave through most g 0(x) (which will later be interpreted as a 1D cut of the
of the domain with intermittent bursts of high values concen-p- field and construct

trated in the regions where the PT field is rough. The multi-

=—2v((VH)?). (13

Herev(V 6)? is the dissipation field. Now consider the quan-
tity p(x,r),

Physically this is the average dissipation in a ball of size

fractal formalismi®2?®2° provides a convenient way to char- ) 1 (x+r)do|

acterize such “erratic” or singular measures. The techrfigue ~ # (*")= (F L ax 9% ) (18)
consists of constructing a meastuge with suitable normal-

ization) and using its moments to focus on the singularities BN do ,

of the measure. The domain in which the field is defined is 71) = FJ'X W)dx ' (19

partitioned into disjoint boxes of sizeand it is postulated

(see, e.g., Ref. 3Ghat moments ofi will scale as As u' is defined for the magnitude of the gradient field we

can postulatgsimilar to Eq.(17) for u]
> w(x,r)d~r7a-ad, (15)

where the sum goes over all the boxes into which the domain
was partitioned. Consider the set of points where the meadered=1 andD(’4 are the generalized dimensions associated
sure scales® and denote the dimension of this set f{yy) with . As usual the scaling is restricted to a range of scales
(again a probabilistic view is more precjs®8y similar con-  (r.<r<ry) andr. is the scale below whictu' appears
siderations as for thg(8) spectrum it can be seen that smooth. Formally, the entity after susigable normalization is
. a sign singular measursee Ottet al>* for a rigorous defi-

Tq=min(qa—f(a)), fla)=maxga-ry). (16) nitiong1). It \?vas conjecturetf that the sign singgular entity
The function 7, is further related to the generalized might also possess scaling properties in analogy with
dimensiond" via D,=7,/(q—1). Practicallj’ a log—log implying

r\(Dg—d(a-1)
) (20)

(,u’(r)q>=C3(q)(M’(rd)q)<

g
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the dissipation field.

(DN =Ca(q) (1) 56 1>Teq. (21)  Refs. 13 and 17to link £, «q, andDy to each other. The
view that seems to have emerged is that there exist simple
Using Eq.(20) we can express E@21) as relations linking the various exponents and that these rela-
()N~ (NIY(r) "8, rg>r>re>re, (22) tions are valid under very general conditions. We present an
] . alternate derivation of some of these relations which makes

wherexq= kq+(Dg—d)(q—1) andr is the lower oscilla-  the implicit assumptions explicit. Proceeding from E2Q),

tory scale below which the derivative doe§ not oscillate. Weassuming thatl9/dx has integrable singularities we obtain
prefer to callx, from Eq.(22) the cancellation exponents as

they directly reflect the difference in the scaling properties of (| 0(x+1)—=00)[%)=(u'(r)Hri~ . (23)

dé/dx and|d6/dX. Substituting from Eq(20) and on comparing with Eq46) we
A priori there is no justification in assuming that the get

scale at which cancellation ceaseas.f is the same as the

scale at whichu' becomes smoothr{). Consider the ex- gq:(Dé_d)(q_lHq_"q- (24)
ample where the derivative is a discrete signal composed of @yriting Eq. (23) for =1 we have

train of delta functiongzero elsewhepewhere the minimum o s

separation between the delta functiond.i§urthermore let (100x+r) =000y =(u' (r)ri=r, (29

us assign the sign of the delta functions in a random fashiorwhich yields«;+ £;=1. Now if we make a strong assump-
In this case the =1, in fact, k;=0.5 due to the random tion regarding the uniform nature of the cancellation, it is

distribution of the signs. But as the delta functions are suppossible to claim that Eq25) holds not only in average but

ported at points we havg— 0. As an aside we point out that on every interval, i.e.,

if there is a maximum scale of separation between the delta ok

functions (say L) then at scales greater thanwe will see |00xHT) = 0()| =" (r)r "2, (26)

D(;=d for u'. The reason for pointing this out is to give a Raising this to thegth power and performing an ensemble

feel for fields that exhibit scaling, on one hand smooth fieldsaverage yields

have D ,=d whereas on the other extreme random fields L, 1

with small correlations also haw®;=d (at scales larger than ([0(x+1) = 00| B = (' (r)Brat=xo, (27)

their correlation lengths Fields with nontrivial scaling over which implies

a significant range are in effect random but with large corre- P

lation lengths. The reader is referred to Marskakl >® for a £q=(Dg=d)(a=1)+q(1=ry). (28)

detailed examination of multiplicative processes and the reThe implications of Eq(28) are quite severe in that it shows

sulting characterization by structure functions and generalé, to be dependent oIT:)[q and the knowledge of only the first

ized dimensions. cancellation exponent allows the derivation of one from the
In order to get a unified picture of scaling in both the other. In general the scaling exponentsdaind the general-

gradient and the field itself there have been attent@g., ized dimensions ofu’ provide exclusive information. It is
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only in the presence of integrable singularities that one camrinkling of the PT level sets. The roughness in the PT field
link the two via Eq.(24), furthermore the stronger relation is expected to have an adverse effect on functions of the
[Eq. (28)] is valid under the added assumption of uniform gradient field. This expectation is borne out in the multifrac-

cancellation. tal nature of the dissipation field. Also, the singular nature of
the gradient field in combination with its sign indefiniteness
C. The gradient of the PT and its absolute value led us to examine a sign singular measure based upon the

We proceed to check if scaling is observas post gradient field. The failure to observe scaling in the sign sin-
P : ng | Vs postu gular measure serves, in our opinion, as a reminder that most

lated for the PT field gradient and its absolute value and> . .
. scaling arguments are postulated at a phenomenological level
whether one can extract the aforementioned exponents. In

the upper panel of Fig. 10 we show the log—log plots Ofand the underlying basis of why scaling is observed in the

(1'(1)% vs r for differentq. The scaling relations certainly first place is a fairly subtle and unsettled issue. Similarly the

appear to hold truéwhich was expected as they held for the _5|mple derivation of the relation between the variety of scal-

dissipation field. The generalized dimensions faf can be ing exponents makes explicit some of the assumptions that

seen the lower panel of Fig. 10. On the other hand the scafi'® .requireq for the validity of similar relations proposed in
ing for {5(r)) seen in Fig. 11 fails to exhibit a power law in earllsr stug!es. h | " din th
r. Hence there is no meaningful way of extracting the can- €garding the more general question we posed in the

cellation exponents as they have been defined. Unfortunateynll beginnciing.or:‘ this paper, L‘e"h"\gsre (;o;:s) tthebS?G active
this implies that the relations derived in Sec. 1I[Bgs.(24) calar stand with respect to bot an urbulence, we

and(28)] cannot be used in this situation. In spite of this, weh"’“/e the following cqmments. With respe(_:t to the vqrtic_ity in
can see that as decreases the tangent to 1g())) has a the 2D Euler _equat|ons the corresponding quant|_ty in the
smaller slope which is consitent with the existence of a 0sSQC System is the PT. The .COfﬁgent structure/fine back-
cillatory cutoff at small scales. ground nature of the vort|C|ty.f|.e’rB carries over quallta_l—
tively to the PT field. The vorticity structure functions which
showed normal scaling in the 2D Euler syst8grossover to
anomalous scaling in the SQG system. Our conjecture is that
In summary, we have found that the PT field in the SQGthe stronger local interactions in the SQG system are respon-
equations appears to become rough within a specified ranggble for this anomalous scaling. In both these systems the
of scales. Moreover, not only is there a heirarchy in the devorticity and PT, respectively, are conserved quantities and
gree of roughness, the roughness is distributed sparsely infeence any singularities one might experience are actually in
qualitative sense. These conclusions are based on a comitile gradient fields, as is seen in the multifractal nature of the
nation of factors, namely, the algebraic power spectrumenstrophy dissipation in the Euler syst@rand the PT dissi-
anomalous scaling in the structure functions, a nontrivialpation in the SQG system.
(B,9(B)) spectrum, the nature of the WTMM map, and the In the 3D Euler case, the PT from the SQG equations is

IV. CONCLUSION AND DISCUSSION
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analogous to the velocity field and* ¢ from SQG corre- between SQG and Euler dynamics in Nature, in cases where
sponds to the vorticity of the 3D Euler equations. The rough©nly a tracer field can be observed, as in the gas giant planets
ness of the PT field is similar to the postulated roughness ofnotably Saturn, Jupiter and Neptune, which exhibit a rich
the velocity field in the inertial range, a subtle differencevariety of turbulent patterns SQG dynamics should yield
being that the roughness in the PT appears to be spard@omalous scaling corresponding to sparse roughness,
whereas indications are that the roughness in the 3D velocityhereas Euler dynamics should yield normal scaling.

field is present almost everywheé®?1?3We reemphasize
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