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CHAPTER 6

Dimensions of Atmospheric Variability

R. T. PIERREHUMBERT

Abstract

We consider a number of applications of the correlation dimension con-
cept in the atmospheric sciences. Our emphasis is on the correlation
dimension as a nonlinear signal-processing tool for characterizing the
complexity of real and simulated atmospheric data, rather than as a
means for justifying low-dimensional approximations to the underlying
dynamics. Following an introductory exposition of the basic mathemat-
ics, we apply the analysis to a three-equation nonlinear system having
some interesting points of affinity with the general subject of nonlinear
energy transfers in two-dimensional fluids. Then we turn to the analysis
of a 40-year data set of observed Northern Hemisphere flow patterns. Our
approach deviates from most previous studies in that we employ time se-
ries of flow fields as our basic unit of analysis, rather than single-point
time series. The main evidence for low-dimensional behavior is found in
the patterns of interseasonal variability. However, even when this is re-
moved, the streamfunction field shows clear indication of dimensionality
in the range 20-200, rather than in the thousands. Due to problems con-
nected with the nonequivalence of various norms in functions spaces, we
do not claim that this represents the “true” dimensionality of the under-
lying system. Nevertheless, it does show the existence of a considerable
amount of order in the system, a fact begging for an explanation.

From this, we turn to the matter of spatial complexity, examining
the geometry of clouds of passive tracer mixed by spatially structured
(atmospherically motivated) two-dimensional flow fields. Evidence is
presented that the cloud ultimately mixes over a region characterized
by dimension two. We also demonstrate that the correlation dimension
of the tracer cloud is directly related to the algebraic power spectrum of
the concentration distribution in Fourier space. From this we are led to
some speculations on the role of chaotic mixing in the enstrophy cascade
of two-dimensional turbulence.

Finally, we consider the spatial patterns of rate of predictability
loss in the tracer problem. This information is obtained by computing
finite-time estimates of the Lyapunov exponents for trajectories starting
from various initial conditions. The rate of predictability loss is itself
unpredictable, in the sense that it exhibits sensitive dependence on initial
conditions. It is suggested that multifractal analysis could be used to
characterize the spatial pattern of predictability.
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1. Introduction

Of the various measures of atmospheric variability, the correlation di-
mension, introduced in dynamical systems theory by Grassberger and
Procaccia (1983), is one that has recently received a lot of attention.
This is a convenient and readily computable way to estimate the fractal
dimension of an object traced out by a time series of points in some
high-dimensional embedding space. Specifically, if we have a system
whose time variation is described by state ¥(t) (where, for example,
¥ is the set of all wind and temperature values at every point in the
atmosphere at time t), and a function d(¥;, ¥3) measuring the dis-
tance between states, then the correlation dimension is calculated as
follows: Discretize the time series to form a sequence of states ¥;, and
compute the distances d;; between each pair of states. From this form
the cumulative histogram H(r) for the number of pairs of distance less
than r. If H(r) is well-approximated by the form H = ar?, then the
exponent d is said to be the correlation dimension. Grassberger and
Procaccia give numerous examples showing why this quantity should
be thought of as a dimension, as well as indicating how it relates to
other measures of dimension.

The analysis has been applied to climatic variations on geologi-
cal time scales (Grassberger 1986, Maasch 1989, inter alia), to daily
weather fluctuations at a single station (Essex, et al. 1987), and to mi-
croscale fluctuations having time scales of seconds to minutes (Tsonis
and Elsner, 1988). The analyses typically indicate low dimensionality
and indeed often seem to be motivated by the (probably forlorn) hope
of justifying the modelling of weather or climate in terms of a small set
of ordinary differential equations. Whether or not this quest is tanta-
mount to tilting at windmills, the correlation dimension analysis does
provide useful information about atmospheric variability, information
that goes beyond the bounds of traditional linear statistics. Such anal-
yses reveal the extent to which the actual variations are concentrated
on a limited subset of the space of all possible variations. It is in this
spirit that we present the ideas of this chapter.

As an example of the geometric information contained in the H(r)
curve, consider Figure 1. The upper example shows a “thin wire grid”
embedded in R?. The object is one-dimensional viewed at small scales,
but of dimension two when viewed at large scales. This would be
reflected in a change in the slope of the log H(r) vs. logr curve at a
distance 7o corresponding to the average spacing of the grids. In the
bottom example we consider the H(r) graph for a “relaxed earthworm,”
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(a)

H(r) = & H{r)=r
=n

(b)

Figure 1. Geometric interpretation of the correlation dimension.

which displays a one-dimensional structure at large scales but is of
dimension three at scales smaller than the thickness of the earthworm.
If the earthworm should become agitated and decide to curl up into
a spiral on the ground, the 1-D large-scale regime would be replaced
by a 2-D regime. All objects which can be embedded in a compact
subset of their phase space have H(r) becoming constant for values
of r sufficiently large to contain the entire object. Thus, all localized
objects look zero-dimensional (pointlike) if you stand back far enough.

It is instructive to compare the correlation dimension analysis
with the “empirical orthogonal function” (EOF) technique, which cur-
rently enjoys much wider application in the atmospheric sciences. This
technique is a systematic way of finding a linear subspace of a high-
dimensional embedding space, to which the trajectory of the system is
approximately confined. Given a vector time series (z;(t),...,z,(t)) in
which each component has zero mean and unit variance, the EOF’s are
simply the n eigenfunctions of the n X n covariance matrix < z;z; >,
where the brackets denote time averaging. The eigenvalues give the
proportion of the variance of the signal explained by projection onto
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the corresponding eigenvector. The use of EOF’s in characterizing at-
mospheric variability was pioneered by Lorenz, though the concept first
emerged in the statistics literature through the work of Karhunen and
Loéve. The minimum number of EOF’s needed to account for, say, 90%
of the total variance is sometimes referred to as the “Karhunen-Loéve
dimension.”

By way of example, consider the motion 2(t) = coswt, y(t) =
sinwt. The eigenvectors of the correlation matrix are (1,0) and (0,1),
and each explains 50% of the variance; the Karhunen-Loéve dimension
is 2. However the correlation dimension is 1, as the motion traces out
a circle in the z-y plane. The correlation dimension analysis provides a
much better description of the confinement of the trajectory to a limited
portion of the embedding space, because it does not need to confine
the trajectory within a linear subspace. On the other hand, a strength
of the empirical orthogonal function analysis is that it provides some
information on the patterns of variation via the eigenvectors, which
have no counterpart in the correlation dimension analysis.

An extension of this example demonstrates that the correlation
dimension analysis must be interpreted with great care if one’s objective
is to determine the dimensionality of the underlying dynamics. Suppose
that the frequency w is time dependent (say, w = wg + asin 2, for the
sake of concreteness), rather than being constant. Then a correlation
dimension estimate based on the trajectory in z-y space is bound to
yield a dimension of unity or less, since the trajectory is restricted to
the unit circle. However, knowlege of the initial point on the circle does
not determine the future course of the system, as one must also know
the phase Qt; that is, the system is actually two-dimensional. Thus,
while the naively determined correlation dimension gives us a useful
description of the kind of set the trajectory lives on in z-y space, it
does not tell us how many equations are needed to predict the future.

The problem stems from the fact that the z-y plane in which the
trajectory is being embedded is not a phase space for the system. The
rectification of the problem is, in principal, equally simple. One forms
the family of 2(N + 1)-dimensional synthetic phase spaces consisting of
the z-y point and its time derivatives up to Nth order, and performs
the dimension analysis for ever larger N until the answer converges.
In the example above, the z-y point and all its time derivatives can
be expressed in terms of the two phases 6, = Q¢ and 6, = w(f)t,
which define a two-dimensional manifold embedded in the 2(N + 1)-
dimensional space. In practice, when applying the method to data
one forms the synthetic phase spaces by employing time-lagged se-
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quences (Zn,Yn, Tn—1,Yn—1,--.), Which is equivalent to computing the
time derivatives by finite differencing.

In this chapter we examine the application of the correlation di-
mension analysis as a tool for characterizing the variability of a num-
ber of actual and simulated atmospheric time series. We begin in §2
with an analysis of a simple system of ordinary differential equations
whose behavior can also be directly visualized geometrically. In §3 we
apply the methods to a 40-year data set of actual atmospheric flow
patterns. In contrast to most previous studies, this one deals with time
series of fields covering most of the Northern Hemisphere, rather than
single-point time series of weather or climate data. We then take up
the characterization of the complexity of individual two-dimensional
patterns in §4, showing how geometrically simple flow fields can nev-
ertheless generate intricate patterns in tracers and vorticity. In this
section we also discuss the relation between fractal dimensions and the
spatial spectrum of concentration variance. In §5 we come up against
yet another form of spatial complexity. The spatial complexity in tracer
patterns arises from loss of predictability of the individual particle tra-
jectories. It turns out that the spatial pattern characterizing the rate
of predictability loss is itself fractal in nature, so that even the de-
gree of unpredictability is in some sense unpredictable. Some general
conclusions and speculations are given in §6.

2. A Toy Atmosphere

To illustrate the key ideas, we first treat a simple model embodying
some of the energy transfers and dissipative characteristics of atmo-
spheric flow. Consider the equations

(—1(%1 = A2A3 - dl Al (21)
% = -24;A5 + g4A» (22)
d

%:3 = A1 Ay — d3As (2.3)

In the absence of dissipation (d; = d3 = g = 0) these equations re-
duce to the conventional triad equations, and conserve the energy and
enstrophy related quantities

E=A 4+ A2+ A%, F=4A}-43 (2.4)



DIMENSIONS OF ATMOSPHERIC VARIABILITY 115

Hence the solutions are closed orbits defined by the intersection of the
sphere E = constant and the hyperboloid F' = constant. These equa-
tions are identical to the gyroscopic equations describing the evolution
of the angular momentum vector of a rigid body. The inviscid triad
equations can be derived from a number of ad hoc and formal asymp-
totic approximations to 2-D fluid flow, and the amplitudes A; may be
thought of as the amplitudes of three scales of motion (e.g. the ampli-
tudes of a triplet of resonantly interacting Rossby waves, as described
in Pedlosky 1979). Motion concentrated initially in the middle scale
(j = 2) is unstable, and transfers energy to the neighboring scales. This
process is at the heart of two-dimensional turbulence.

But the real atmosphere is not a closed system; it is forced by
energy input at intermediate scales, and nonlinear processes transfer
energy to other scales where it is dissipated. In Eq. (2.2), g represents
the generation process, while d; and d3 in Eqs. (2.1) and (2.3) represent
dissipation. This system has the interesting property that a trajectory
located initially on one of the axes remains there indefinitely. Thus the
three trajectories

(A], As, A3) = (a exp(—dlt), 0, 0) (2.48.)
= (0, aexp(gt), 0) (2.4b)
= (0, 0, aexp(—dst)) (2.4¢)

are all exact nonlinear solutions of Egs. (2.1)-(2.3). This means that
the dissipation in itself cannot be relied on to prevent the growth of
energy in the system; to keep the trajectory from running off to infinity
along the 2-axis, energy must be transferred out of mode 2 and into
modes 1 and 3 where it can be dissipated.

This property is not an artifact of the ad hoc truncation; it is also
encountered in partial differential equations describing fluid systems
that are more like the real atmospheric flow. For example, consider
the damped barotropic vorticity equation, augmented to make a single
mode unstable:

8.V + T(¥, V) = —=dV? Y + g(V:¢)nm (2.5)

where 1 is the 2-D streamfunction, V¢ the vorticity, (V?¢)nm the
projection of the vorticity on the Fourier mode (n, m), and J is the
Jacobian matrix defined to be J(A, B) = {9:A0yB — 0:B0yA}. One
can think of the artificial instability as a surrogate for various instability
processes (such as baroclinic instability) that cannot be captured in a
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single-layer model. If the system is initialized with a pure Fourier mode
(n, m), the Jacobian vanishes identically, and the amplitude of the
mode grows without bound. However, the mode is subject toa sideband
instability rather similar to that occuring in the triad model, and so
nonlinear transfer out of the mode can cause enough dissipation to limit
growth. We are not aware of any integrations of Eq. (2.5) addressing
the boundedness of the flow, but a similar question occurs naturally
in connection with baroclinic instability in an infinite z-y plane, and
there the runaway mode appears to have bounded amplitude. (1. Held,
personal communication).

Now let’s get a bit more mathematical. The origin, (0,0,0) is a
fixed point of Egs. (2.1)~(2.3). The directions (1, 0, 0) and (0, 0, 1) are
stable, while the direction (0, 1, 0) is unstable. In fact, given Eq. (2.4),
the unstable manifold of the system (defined crudely as the set of tra-
jectories coming out of the fixed point at directions tangent to the local
unstable direction) is simply the 2-axis. The stable manifold, which is
the set of points which flow into the fixed point with time, is two-
dimensional because there are two stable directions; it contains the
l-axis and 3-axis, but the structure in between can be (and probably
is) highly contorted. A trajectory located on the unstable manifold
initially will of course run directly off to infinity, but what happens if it
is slightly displaced? To answer this question, we linearize Egs. (2.1)-
(2.3) about the unstable trajectory (2.4b), finding

%(Ah As) = (A;, A3)exp(gt) (2.6)

Hence neighboring trajectories deviate from the unstable manifold like
the exponential of the exponential of time. Clearly, the unstable man-
ifold is a very unstable creature indeed. This prevents the trajectory
from shadowing the unstable manifold and running directly off to infin-
ity. However, after deviating from the unstable manifold, the trajectory
can come close to the two-dimensional stable manifold and be swept
back towards the origin, where it begins the process'anew. Thus trajec-
tories are expected to funnel into the origin along the stable manifold
and fountain outward from there along the one-dimensional unstable
manifold.

Numerical calculations show that this is indeed what happens. The
case d; = dj is somewhat pathological, as the quantity F° then becomes
monotonically decreasing and the trajectories asymptotically collapse
onto the crossed planes A; = +Ajz, and thence spiral out to infinity
along a highly organized trajectory. When di # d; the trajectory is
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Figure 2(a). Phase space structure of the triad system. Left: pro-
jection of trajectories on Aj-As plane. Right: cross section show-
ing intersection of trajectories with the plane Ay = 0. Parameters

are (dy,g,ds) = (0.5,0.25,1).
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Figure 2(b). Cross sections as in Figure 2(a), but for A2 = 1.5 and

Ay, = —15.

more chaotic and unpredictable. A typical set of points tracing out the
attractor for (dy, ¢, d3) = (0.5, 0.25, 1) is shown in Figure 2.

Does the system remain within a bounded region of phase space as

the integeration is carried out over ever longer times? This question is
equivalent to asking whether the unstable fixed point (0, 0, 0) borders
the attractor, since trajectories beginning arbitrarily close to the unsta-
ble manifold will attain correspondingly large amplitudes before they
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Figure 3. Cross sections through the stable manifold of the triad
system for various values of As.

deviate. The structure of the stable manifold gives some clue of the
likelihood of this. Some slices through this 2-D structure are shown in
Figure 3; the manifold is highly contorted, rather like a crumpled ball
of tissue paper. The series of shell-like structures visible in the cross-
sections actually come from sheets winding helically about the A; and
As axes, giving the stable manifold the appearance of a series of four
corkscrews or auger bits with points directed toward the origin along
the 1 and 3 axes. Being more or less space-filling, it is rather hard
to avoid, and hence trajectories should eventually come near it and
be carried near (0, 0, 0). Based on the numerical results (and further
analyses to be presented below), we conjecture that the amplitude is
indeed unbounded. This conjecture has not yet been proved, however.

The geometric influence of the one-dimensional unstable manifold
is clearly present in the trajectories. For this system, which has a three-
dimensional phase space, most of what we would like to know about
the geometry of the attractor can be inferred directly from looking at
plots, a consequence of the fact that we are three-dimensional beings
and have brains capable of interpreting three-dimensional geometric
structures (or at least inferring them from Platonic shadows on the
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two-dimensional retina). In higher dimensions this is not possible, and
so one must turn to various numerical descriptions of the geometry.
The correlation dimension is the tool we shall employ here. Let us
see how the geometric structure of the triad model is reflected in its
correlation dimension.

We took a data set of 50,000 points from the triad model trajec-
tories (equally spaced in time), and computed the Euclidean distance
in 3-space between each pair of points. The histogram of the set of
differences is shown on a log-log plot in Figure 4(a). We show results
for the full data set and also for a subset consisting of the first 5,000
points. There is an extensive range of distances for which the attractor
is characterized by a correlation dimension of approximately 1.5. This
is consonant with what we know about its geometry: the trajectory
spends much of its time clustered about the one-dimensional unstable
manifold, but during its necessary excursions away from this manifold
it executes a trajectory along one of the two planar “ears” sewn to the
unstable manifold like pages onto the spine of a book, if we may mix
metaphors. Thus, it makes sense for the dimension to be between 1
and 2.

At very small distances for the 5,000-point plot, the slope ap-
proaches unity; here we are beginning to pick up the geometry of indi-
vidual trajectories, which are one-dimensional curves. For the 50,000-
point plot, this behavior sets in only at still smaller distances, as the
trajectory has had time to fill out the attractor more densely. At large
distances the curve asymptotes to a constant, reflecting the obvious fact
that for a finite set of points the distance must have an upper bound.
A detailed examination of the behavior at large distances sheds some
light on the question of whether the attractor lies in a bounded region
of phase space, which is identical to the question of whether the his-
togram becomes exactly flat above some critical distance. First note
that the curve for the 50,000-point data set is almost exactly paral-
lel to that for the first 5,000 data points. To underscore this feature,
in Figure 4(b) we have plotted the 5,000-point histogram rescaled by
the ratio of the total number of pairs (a bit more than 100). The
rescaled curve lies precisely atop the 50,000-point histogram, except
at very small distances, indicating that the geometric structure of the
attractor has been well defined.

A closer look at the large-distance tail (Figure 4(b)) shows that
a larger maximum distance is attained in the 50,000-point case than
in the 5,000-point case. In fact, the tail region of the histogram can
be well fitted by a curve of the form 1 — ae™®@N, where N is the
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Figure 4 (a). Correlation dimension plot (log-log cumulative his-
togram) for the triad system.

Tall of the triad histogram

1.251 10 % { § t t
<4
-
3
1.250 w* T g = T
1249 10° + = +
1.248 10° ¥ 3
1.247 10° F —o- 5000 pis (scaled) 3
E —O -50000 pts p
1.246 10° T — - -(1-1.0Bexp(-1:31NN +
1.245 16° F 31
E 1
1.244 10" + 3
9 p
1243 10° + } } } } :
s s 6 7 8 9

dip .9l

Figure 4(b). As in Figure 4(a), but showing a magnification of the
tail region.

number of pairs. From this we infer a finite, though exponentially small,
probability of arbitrarily large excursions. However, the distribution is
integrable at large d, so that averages of any polynomial quantity (such
as the variance) converge. This situation contrasts with 1/ f noise.
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The state of the real atmosphere is characterized by an infinite-
dimensional phase space (the space of the values of wind, temperature,
etc. at each point of the atmosphere), but it may be that relatively
few directions in phase space are unstable. It is the signature of such
a low-dimensional unstable manifold that we seek in the next section.

3. The Real Atmosphere

The data source for this study is a subset of the operational U.S. Na-
tional Meteorological Center archive for 1940-1985. It is digested from
the thousands of daily inhomogeneous data sources (radiosondes at sev-
eral hundred stations, surface pressures, aircraft observations, and ship
observations) and interpolated on a regular grid of 1,977 points cover-
ing the Northern Hemisphere poleward of 30° N latitude. We will focus
on the temperature pattern on the 500 millibar (mb) pressure surface
(roughly in the middle of the atmosphere, as determined by mass), and
the height of the 500mb surface. The latter is of considerable dynami-
cal interest, as it is (approximately) a streamfunction for the upper air
flow. This study was made feasible by the availability of the archive on
a single 600 megabyte read-only optical disk (CD-ROM) compiled by
Professor Clifford Mass of the University of Washington (Seattle). The
data analyses can be performed in the comfort of ones’ own office with
an inexpensive CD-ROM drive attached to a Macintosh II computer.

Although the archive includes data for each day, we will mostly
look at the variability of the monthly means. Not only does this keep
the computational requirements manageable, it also emphasizes pre-
cisely the low-frequency motions that are of primary interest in the
effort to probe the feasibility of extended-range forecasting. It is gen-
erally agreed that individual storms lose predictability after a week
or two. However, if the more ponderous general weather patterns
embodied by the monthly means turns out to be governed by a low-
dimensional attractor, that would really be news that would shake up
the long-range forecasters. To be sure, the monthly mean destroys
information on time scales of motion from minutes to weeks that are
formally part of the underlying phase space. The premise (or pious
hope) is that the monthly mean rectified fluzes arising from these mo-
tions are nevertheless systematically related to the monthly mean flow
itself.

A single 500mb field from the archive is described by a point in a
1,977-dimensional space, and the time series moves in this space. Thisis
not necessarily a phase space of the system, as we have neglected other
data (temperature and height at other levels, moisture, etc.) needed to
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truly specify the future course of the system; furthermore, the monthly
averaging process throws away additional information. Thus, the work-
ing space is a projection of the true phase space. Trajectories can cross
in the working space, and so there is no guarantee of the existence of
a flow determining future evolution from the initial conditions. As is
done for the analysis of 1-D climatological time series, we seek to re-
cover some of the true phase space structure by creating synthetic phase
spaces of dimension 1,977m, by taking m-tuples of fields (Z1,-+-12Zm),
where each Z; is a 1,977-point field. The correlation dimension is es-
timated by taking the Euclidean (¢2) distance between each pair of
points in this phase space, and forming the histogram.

Results for the monthly mean 500 millibar height ( 7.500) are shown
in Figure 5 for various values of m. An immediately apparent feature
is a subrange at large distances characterized by having slope 1. This
indicates that the large-amplitude fluctuations are composed of trajec-
tories that come in one-dimensional bundles. Somewhat smaller am-
plitude fluctuations appear to be characterized by a three-dimensional
structure, and at yet smaller amplitudes the slope increases sharply,
suggesting a dimension somewhere in between 20 and 40. This picture
shows little sensitivity to the value of m. We have also reproduced
similar results for subsets consisting of half the total data.

The 1-D structure at large amplitudes is nothing else than the
seasonal cycle. For terrestrial conditions, root mean square differences
in Z500 as large as, say, 150 meters occur only between two patterns
belonging to different seasons. The results are telling us that the sea-
sonal cycle is dominantly a 1-D entity; to tell what the flow pattern is
to lowest order, one only needs to know the time of year. But what
of the three-dimensional subrange? The origin of this feature is less
apparent.

In order to remove the seasonal effects, we repeated the calcula-
tion using data only from the winter months (December, January and
February). Results are shown in Figure 6. Not only has the 1-D sub-
range disappeared, but the 3-D subrange has disappeared as well. We
are left only with the high-dimensional structure at short distances;
the slight apparent decrease in its slope cannot in any way be regarded
as statistically significant, a point about which we shall have more
to say shortly. The results indicate that there is a component of the
interseaonal variability that can be characterized by three degrees of
freedom, one that is not phase-locked to the seasonal cycle. What is
this motion? And what cycles of spatial patterns does it correspond
to? It is one of the frustrations of the correlation dimension analysis
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500 mb height histograms, all menths 1950-1980
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Figure 5. Correlation dimension plot for the 500mb geopotential
height field of the atmosphere, using all monthly data.
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Figure 6. As in Figure 5, but using only December, January and
February data.
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that it tells us that the motion in infinite-dimensional function space
is confined to the vicinity of a three-dimensional manifold, but it gives
us no way of constructing this manifold. Specifically, there is (at least
locally) a map

(Al’ Ag, A3) = Z(:Ea y’AI’ A?v A3)

from triples of real numbers to the function space of all atmospheric
flow patterns, which captures a great deal of the atmospheric variabil-
ity. It would be very useful to know this map, as it would enable the
characterization of much of the state of the atmosphere in terms of the
specification of the triple of numbers.

An analysis of variability of winter 500mb temperatures is shown
in Figure 7. The overall picture is rather similar to that for the height
field; there is no indication of a very low-dimensional subrange, and
slopes for small temperature differences indicate a dimensionality of
around 20. Temperature is governed by very different detailed dynam-
ics from the height field. In particular, it is (in a crude sense) advected
around by the streamfunction derived from height data, and for this
reason might be expected to show a markedly higher dimensionality.
Evidently, the details arising from this process are averaged out in
the monthly mean, leaving a temperature variability pattern of similar
complexity to that for the height field.

Analysis of daily data would incorporate modes of variability that
are filtered out in the monthly mean data set. Since there are 365
height fields per year, and the required number of disk accesses grows
as a quadratic function of the number of samples, the rather slow ac-
cess speed of the optical disk precludes an extensive multi-year study
such as we have undertaken for the monthly means (though such a
study will be feasible when we acquire enough fast magnetic disk space
to upload an appropriate subset of the data). Still it is of interest to
see what features can be discerned in the analysis of a single year’s
height data. Results for the year 1977 are given in Figure 8. Of course,
with only one year of data we cannot pick up the 1-D seasonal cycle,
as one cannot isolate a periodic signal {from the sampling of a single
period. Indeed, the 1-D subrange at large distances is not present in
this plot. However, there is a distinct 5-dimensional subrange for mod-
erately large distances. Probably three dimensions of this correspond
to the interseasonal variability signal detected in the monthly mean
analyses. We speculate that the remaining two degrees of freedom are
associated with propagating features in the storm tracks. For smaller
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Figure 7. As in Figure 6, but for 500mb temperature fields.
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Figure 8. Correlation dimension plot for the 500mb geopotential
height based on daily data at 12GMT for the year 1977.

height differences, the slope indicates a high-dimensional subrange sim-
ilar to that picked up in the monthly mean analyses, suggesting that
the higher frequency motion adds little to the spatial complexity of the
signal; however, the number of samples in this steep subrange is rather
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small, and so drawing conclusions of this nature is perilous.

This leads us to the question of statistical significance of the re-
sults. Grassberger (1986) has treated the question of how much data
is needed to reliably estimate dimensionality. In a nutshell, the answer
is that the data requirements increase precipitously as the underlying
dimension increases, since the volume of an N-dimensional sphere in-
creases rapidly with N and one must have enough points to more or
less fill up the sphere. To provide a more graphic indication of sta-
tistical reliability, which is nonetheless tied to the same idea, we have
constructed sequences of random fields of N points each, filled-in using
a random number generator. If the random number generator is truly
random, the underlying dimensionality of the sequence will be N. We
then constructed graphs of the correlation dimension from finite se-
quences of various lengths n, to see how well we could infer the true
dimension. The results are shown in Figure 9. For a 20-dimensional
underlying data set, an analysis with 120 points (similar to the size
of the sample in our winter analyses) indicates a dimensionality in the
‘teens, which indeed is an underestimate. Doubling the amount of data
does not improve the situation much; it is not until we go to 10,000
data points and very small distances that we begin to see much im-
provement. Hence, we are not likely to ever know whether the true
slope for the atmospheric data set is 10, 20, or 30. However, 120 point
samples from data with underlying dimensionalities of 100 and 2,000
show markedly steeper slopes. From this, we conclude that the di-
mensionality of the atmospheric data as present in this data set and
for the ranges of difference discussed is unlikely to be as much as 100.
The issue remains as to how much of this apparent low dimensionality
is in the real atmosphere, and how much is an artifact of the spatial
smoothing and interpolation techniques used to derive the gridded data
set from the raw observations. This question can only be answered with
recourse to higher resolution data sets derived from the raw data by
different methods.

In dealing with the height field (which is practically a streamfunc-
tion for mid-latitude flow), we are actually already applying a spatial
filter to the underlying dynamics. To specify the future course of a
two-dimensional fluid, one needs to know the vorticity accurately, not
the streamfunction. Similar considerations obtain for potential vortic-
ity in the atmosphere. Since the vorticity ¢ and streamfunction ¢ are
related by V29 = (, the streamfunction represents a highly smoothed
picture of the vorticity. It is true that knowing the streamfunction
ezactly, one can infer the vorticity exactly. However, small amplitude
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Figure 9. Correlation dimension plot for random fields of various
dimensions.

streamfunction errors at small scales destroy the relation. To bring this
point home, consider the functions

fi(z) = cosz, fa(z)=cosz+ ecos (%)

The root-mean-square mean difference between these two functions is
small if € is small. However the root-mean-square mean differences
of d?f/dz? (which is like vorticity, if one thinks of f as the stream-
function field) diverge as € approaches zero. This phenomenon is a
reflection of the fact that in function spaces (unlike finite-dimensional
systems) not all norms are equivalent. Distances that approach zero
with respect to the streamfunction norm do not approach zero with
respect to the vorticity norm. The relevance for the correlation di-
mension analysis, using data sampled from function spaces, is that we
could get a very different dimension from vorticity data than we would
from streamfunction data. We would need to have accurate data down
to very small distances between streamfunctions to pick up the effects
of vorticity fluctuations with small spatial scales. Yet, according to
prognostic equations such as Eq. (2.5), fields with differing small-scale
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vorticity patterns, but nearly identical streamfunction patterns, will ul-
timately evolve in time along very different paths. Hence apparent low
dimensionality in streamfunction data does not mean that the future
course of the system can be accurately predicted by projection onto
this low-dimensional manifold.

Another possible source of apparent low dimensionality is filter-
ing of a high-dimensional process by a linear subsystem. Consider the
first-order Markov process A, = pA,_y + €n, where p < 1 and ¢, is
uncorrelated white noise. The underlying dimensionality of the system
is infinite, in the sense that no finite amount of initial data admits the
prediction of the future course of the system over an indefinitely long
time period. However, examination of large amplitude fluctuations will
generally pick up the one-dimensionality associated with the exponen-
tial decay of A. 'The correlation graph will show a one-dimensional
subrange for large A differences, with marked steepening as small dis-
tances are approached. However, the apparent one-dimensionality is
not entirely without dynamical significance, as it does indeed reflect
a certain limited measure of predictability of large amplitude fluctua-
tions. A similar process may occur in the atmosphere, where the lin-
ear subsystem could be provided by large-scale, low-frequency Rossby
waves. ’

The low dimensionality of the variability of the height and temper-
ature patterns has some interesting consequences for the reccurence of
weather patterns. If the dimensionality of the monthly mean fields were
as high as, say, 1,000, one would have to wait (dZ/dZ,)"'°%° months to
see two fields that differed by dZ, where dZ, is some reference value.
If this were the case, each weather pattern would for all intents and
purposes be unique. With a dimensionality of 20 or so, however, re-
currence of similar patterns would be rather common. In fact, long
before fractal geometry had been invented, Lorenz (1969) studied re-
currence in atmospheric flow. His intent was to analyze atmospheric
predictability by first searching for similar initial states in the historical
record, and then examining the divergence of their subsequent evolu-
tion. Lorentz’s attempt was only partially successful, for reasons ev-
ident in Figures 5-8—close analogues, while not exactly nonexistent,
are nonetheless rather rare. The entire 40-year historical record yields
only a score or so of analogues close enough to be useful in predictabil-
ity studies. Even if the dimension did not increase beyond 20 at small
distances, halving the threshold dZ at which we are willing to accept
two flows as analogues still would mean waiting 2%° times as many
months (or about 40 million years) for suitable analogues to appear.
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1. Genesis of Spatial Complezity: Chaotic Mizing

Regardless of the implications (or lack thereof) of the results of §3
for the presence of low-dimensional chaos in the atmosphere, it’s clear
that the space of all streamline patterns visited by points of the at-
mospheric attractor can, with considerable accuracy, be characterized
by a rather small number of coordinates. On the other hand, observa-
tions of tracers such as potential vorticity (e.g., McIntyre and Palmer
1983) typically show a great deal of spatial complexity. There is no
contradiction in this state of affairs. Recent results on mixing by two-
dimensional, time-dependent flows show that the particle trajectories
can be chaotic and exhibit predictability decay even if the velocity field

moving the particles around is perfectly predictable—in fact, even if it -

is periodic in time (Ottino et al. 1988). In this section, we analyze an
example of this kind of mixing in an idealized atmospheric flow. The
correlation-dimension analysis will reappear here as a measure of the
spatial complexity of the tracer field.

Consider the two-dimensional incompressible velocity field defined
by the streamfunction

W = Acos(ki(z — e1t)) sin(lhy) + € cos(ka(z — c2t)) sin(lay)  (4.1)

This represents a primary traveling wave with amplitude A and phase
speed c;, disturbed by a perturbation with speed c» and (small) ampli-
tude e. Most of the results shown below are insensitive to the specific
kind of waves chosen, but for the sake of concreteness let’s consider
solutions of the barotropic #-plane equation. This equation is a crude
approximation to planetary-scale flows in a shallow atmosphere, and
consists of Eq. (2.5) with g = d = 0, the vorticity being replaced by
the potential vorticity V24 + By. It is essentially a tangent-plane ap-
proximation to incompressible 2-D flow on the surface of the sphere,
with z being approximately the longitude and y being approximately
the latitude. The waves in this system are known as Rossby waves, and
satisfy the dispersion relation

e PE (4.2)

L2 + 2

when the equations are linearized about a state of rest. In fact, with
¢y given by Eq. (4.2), Eq. (4.1) is an exact nonlinear solution of the
equations for arbitrary A provided € = 0. The quantity c; is also taken
to be governed by the Rossby wave dispersion relation, though there
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is no particular mathematical justification in doing so. The mixing
results are governed primarily by the streamline geometry of the un-
perturbed flow and the overall magnitude of the perturbation, so this
crude assumption on the form of the perturbing wave isn’t particularly
dangerous.

In the comoving frame defined by X = 2 — ¢, the velocity field
has the streamfunction

¥ = Acos(ky X)sin(lyy)+ery+ecos(ka X —ka(c2—c1 Yt)sin(ly) (4.3)

and corresponds to a steady velocity field disturbed by a perturbation
that’s periodic in time, the Poincaré period being T' = 21 [(ka(c2 —€1))-
The problem of particle motion in this flow field is a perturbed planar
Hamiltonian system. Figure 10 shows the unperturbed streamlines in
the comoving frame for A = 1. The stagnation points P and P’ form
what is known as a “heteroclinic cycle,” being connected by the upper
arc PP’ (the unstable manifold of P and the stable manifold of P")
and the lower segment P' P (the unstable manifold of P’ and the stable
manifold of P). The latter is preserved under perturbation, but power-
ful theorems of dynamical systems theory imply that the former breaks
up generically into a chaotic set. Itis the coexistence of closed and open
streamlines that is at the heart of the chaos, leading to the inevitability
of chaotic mixing. Indeed, Knobloch and Weiss (1987) have presented
evidence of chaotic mixing in thermosolutal convection, which involves
modulated traveling waves having an identical streamline geometry to
that arising in the Rossby wave case.

In Figure 11 we show the time evolution of an initially small cloud
of particles placed near the bottom of the recirculating eddy at the
lower left of Figure 10. The particles were moved around in the velocity
field defined by Eq. (4.3), taking A = 1 and € = 0.15. The number of
time periods T that have passed are indicated on each frame.- The
cloud is stretched out rather gently for a time, but then “finds” the
unstable manifold and expands in a burst. Thereafter, the mixing
becomes roughly diffusive, displaying rapid stretching and folding and
efficient cross-streamline mixing. The final state of a mixed cloud of
10,000 particles is plotted in Figure 10, in order to show the intimate
association between the mixed region and the heteroclinic streamline
structure.

It is common practice to characterize observed or simulated con-
centration distributions by their Fourier power spectra. What is the
power spectrum of a distribution such as shown in Figure 10?7 An el-
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Figure 10. Streamline pattern of the primary Rossby wave in the
comoving reference frame. The domain goes from 0 to 2p in z and
from 0 to p in y. The cloud of points illustrates the dispersal of
an initially small cloud of particles when they are advected by a
perturbed Rossby wave with e = 0.23.
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Figure 11. Time sequence of particle dispersion.
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ementary argument reveals a direct relation between spectra and the
correlation dimension of the particle cloud.

Consider a concentration pattern made up of an assemblage of N
circular blobs located at points r; in the two-dimensional plane, with
j=1,...,N. Each blob contributes a concentration G(|r —r;|), where
G(0) = 1. Thus, the concentration is

N
C(r) = Z G(Ir —r;)) (4.4)

and its 2-D Fourier transform is

N
(k) = 9(2“;|) > ek (4.5)

i=1

where g(-) is the Fourier transform of G(-). Thus, the concentration
variance spectrum is

|C(k)|2 - !9“21;'”2 i eik-(rj-—rj:) (4.6)

di'=1

Now suppose that there are a large number of particles, and that the
distribution of interparticle distances is governed by a probability den-
sity P(6r) = P(éz, 6y), where ér = (éz, §y) is the distance between
particles. Then the number of particle pairs separated by vector dis-
tance 6r is approximately N2P(dr), whence Eq. (4.6) becomes

ot = w2 LaEDE J[ pwes asdy (4.7)

in which the double integral extends over all space. For wavelengths
much longer than the individual blob radius, g = 1. Thus, the concen-
tration variance spectrum is proportional to the Fourier transform of
the probability distribution of the interparticle distance. If we further
assume the probability distribution to be isotropic, then P(r) = P(r),
where r = |r|, whence, upon integrating over angles 6, Eq. (4.7) be-
comes

le(k)}? = constant - /000 rP(r)Jo(kr)dr (4.8)

where J, is the zero-order Bessel function of the first kind. This
gives us the desired connection with the correlation dimension, since
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rP(r) = dH/dr, H being the cumulative histogram we have been deal-
ing with in our dimension computations. If there is an extensive range
of distances for which H = r¢, then letting (k) be the integration
variable in Eq. (4.8), we find

C(k) = k|e(k)|? = constant - k174 (4.9)

where C(k) is the isotropic power spectrum as conventionally defined.

As the concentration pattern is embedded in the two-dimensional
plane, we must have 0 < d < 2. The case d = 0 corresponds to clus-
tering of the concentration into a few isolated pointlike regions, and
yields a power spectrum that increases toward short waves. The sit-
uation d = 1 corresponds to well-separated strands, and yields a flat
spectrum. The steepest possible spectrum is k™!, corresponding to
mixing of the tracer over a two-dimensional region. Steeper spectra
cannot be associated with self-similar fractal concentration patterns,
since there is not enough variation at small scales. A more traditional
way of looking at this derives from the fact that k~! has a divergent
integral from (any) ko to oo, corresponding to an infinite total concen-
tration variance. Steeper spectra, however, have convergent variance,
whence one can define the integral scale

Jo kT2C dk

2 _
- [oCdk

(4.10)

This defines a preferred scale for structures in the concentration pat-
tern. Obviously, such distributions cannot exhibit self-similarity.

It is a simple matter to apply this calculation to particle dispersion
data from the Rossby wave problem. A computation of the correlation
dimension for a cloud of particles like that shown in Figure 10, but
recomputed with 40,000 particles, shows an extensive range of scales
characterized by d = 2 (or perhaps a bit less). This implies a subrange
with a k~! spectrum. In Figure 12 we show the spectrum, calculated
from a Bessel transform of the histogram. It indeed shows the pre-
dicted spectrum for the intermediate length scales. This spectrum is
the same as the classical Bachelor spectrum predicted for tracers in
homogeneous, isotropic, two-dimensional turbulence, on the basis of
scaling arguments (e.g., see Rhines 1979).

How universal is this result? All parameter settings we have tried
in the Rossby wave case ultimately lead to a mixed cloud character-
ized by d = 2. We have also found d = 2 for chaotic mixing by the
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Figure 12. Power spectrum of the concentration distribution in
Figure 10, computed by Bessel transform of the histogram.

Kida vortex (Polvani and Pierrehumbert 1989). Visual analysis of the
numerous cases considered by Ottino and others reveals no obvious
contradictions to the d = 2 law. While it seems plausible that chaotic
mixing should always proceed to d = 2, we have been unable to pro-
duce a proof of this conjecture. If we take this conjecture as true,
however, it implies an ubiquity for the Bachelor spectrum that tran-
scends the restrictive assumptions of the original scaling arguments.
The k! spectrum would arise naturally in any flow with fluctuating
large eddies, regardless of whether the eddy field is itself homogeneous
or isotropic. The spectrum can be obtained as a result of advection by
the large scale component of the flow field alone. This is a dramatic il-
lustration of the well-known nonlocality of two-dimensional turbulence
in spectral space. The concentration spectrum at length scale L (no
matter how small) is governed by the velocity field of the large eddies,
rather than by advection of eddies having scales near L.

Our results on concentration spectra have some implications for
the dynamics of two-dimensional turbulence as well. Vorticity (or more
generally potential vorticity), is a tracer in an inviscid fluid, as it is con-
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served following a fluid parcel. The power spectrum of vorticity is dis-
tinguished by the name “enstrophy spectrum.” Owing to the relation
between vorticity and velocity, a k=% enstrophy spectrum corresponds
to a k—(+2) energy spectrum. The same scaling arguments that pre-
dict a k~! concentration power spectrum in homogeneous, isotropic
2.D turbulence yield a k=1 enstrophy spectrum and corresponding k=3
energy spectrum. Assuming vorticity acts qualitatively like a passive
tracer, the chaotic mixing properties imply that the k~! enstrophy
spectrum can arise in much more general circumstances. How does
vorticity differ from a passive tracer?

Unlike a passive tracer, it changes the velocity field. From our
standpoint, the most important manifestation of this is that as a cir-
cular vorticity blob is stretched out into an ellipse, its self-induced
velocity causes it to rotate or roll up, both of which act to hold the
blob together. Thus, we expect that isolated strong vortices will sur-
vive, while sufficiently weak vortices will be dispersed in the manner
of a passive tracer. Chaotic mixing is generic in the sense that it is
not particularly sensitive to the details of the fluctuating velocity field.
This fact leads us to conjecture that the strength of “weak” vortices
need not be infinitesimal in order to be dispersed like a passive tracer.
It should be sufficient that they not be strong enough to hold together.

For many years the k=1 shortwave enstrophy spectrum was as-
sumed to be a fact of life in 2-D turbulence. However, calculations
by McWilliams (1984) and many others since tend to show a steeper
spectrum. The steepness is generally associated with the freezing out
of isolated eddies that have individually smooth vorticity distributions.
The incompatibility of this situation with self similarity is in accord
with the analysis presented above. When the tracer in question is vor-
ticity, the integral scale of Eq. (4.10) represents a characteristic vortex
size. Since the k~1 spectrum appears to be an inevitable consequence of
chaotic dispersal, the steeper spectra are expected to occur only when
the initial condition contains small eddies intense enough to resist be-
ing torn apart by the large-scale flow field. This hypothesis is currently
being tested in fully nonlinear simulations, the results of which will be
reported elsewhere.

The above considerations apply to the small-scale spectrum of two-
dimensional turbulence. At large scales, two-dimensional turbulence
exhibits a different universal spectrum, characterized by a k=573 en-
ergy spectrum and a flux of energy from small scales to large scales. It
is interesting to note that this spectrum is also compatible with a fractal
vorticity structure. The energy spectrum implies a k'/3 enstrophy spec-
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trum, which yields a dimensionality d = % Since d = 0 corresponds
to “vortex clumps” and d = 1 corresponds to “vortex strands,” the
indicated geometry of the large-scale vorticity structures is "clumpy
strands.” The chaotic mixing results provide some dynamical under-
standing of the reasons for the small-scale vorticity geometry, but we
do not yet have analogous explanation for the large-scale geometry.

5. The Predictability of Predictability: Fractal Structure of Lyapunov
Ezponents

We have seen that the trajectories associated with deterministic flow
fields can exhibit chaos and loss of predictability. The mixing seen in
Figure 10 is prima facia evidence that, given a small initial error in
the position of a particle, after a sufficiently long period of time it will
be more-or-less equally probable to find the particle anywhere within
a broad two-dimensional region. Can we at least predict the rate at
which predictability will be lost? If, for example, a radioactive cloud
is released over Chernobyl, can we say with confidence how long its
trajectory can be accurately predicted? In this section we take up this
question, using the system described in §4 as an example. i
The basis of this analysis is the computation of a variant of the Lya-
punov ezponent. This number measures the exponential growth rate of
the separation of neighboring trajectories. To compute the Lyapunov
exponent, we take two initial conditions separated by a distance § and
integrate the corresponding trajectories forward in time for a long pe-
riod 7. The distance d(t) between the trajectories is computed, with
the (most unstable) Lyapunov exponent then being given by logd/.
For a two-dimensional system, such as the Rossby wave example, there
are only two Lyapunov exponents; one is positive and the other nega-
tive, their sum being zero, in accordance with the incompressibility of
the velocity field. A technical detail of the calculation is that we actu-
ally use three trajectories, taking the maximum separation in order to
ensure against the unlikely possibility of the initial condition projecting
exactly onto the contracting direction rather than that of expansion.
The true Lyapunov exponent for a given trajectory is obtained in
the joint limit as § — 0 and 7 — oco. Of course, this is an impossible
limiting operation to carry out numerically. Instead we deal with esti-
mates of A for finite times 7, which are in any case of greater physical
interest since we’re limited to only a finite time in which to observe a
particular experiment anyway. It’s generally assumed that any trajec-
tory within the chaotic zone will yield the same Lyapunov exponent.
But we take nothing for granted, especially since we are computing only
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a finite-time estimate. Hence, we cover the region of interest with a
grid of initial conditions, and compute A for trajectories starting from
each point on the grid. In the subsequent discussion, we confine our
attention to the finite-time results, and do not attempt to treat the
formidable question of what happens as 7 — 0.

The spatial distribution of the finite-time estimates of the Lya-
punov exponent are shown at three different scales in Figure 13,

Figure 13. Spatial distribution of the Lyapunov exponents based
on 50 Poincaré time periods. Black regions are nonchaotic (A = 0),
grey regions correspond to values of A between 0 and the median
of all positive values, and white regions correspond to above me-
dian values. The top panel shows the macroscopic structure of the
chaotic zone, and covers the domain z € [0,7], y € [0, 2]. The
lower-left panel zooms in by roughly a factor of 10, covering the
domain z € [1.520795, 1.620795], y € [0.2, 0.3]. The lower-right
panel zooms in by yet another factor of one thousand, covering the

domain z € [1.570695, 1.570895], y € [0.2499, 0.2501].
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computed for € = 0.15 and 7 = 507. This analysis makes it easy to
discern the macroscopic structure of the chaotic zone (see top panel),
as non-chaotic regions are characterized by A = 0. A striking feature
of the distribution is that the boundary of the chaotic zone is not a
smooth curve, but has the typical coastline-like appearance of a fractal.
We leave it to the reader to decide whether or not this is surprising.
Moreover, there is a great deal of fine-grained variability of A within the
chaotic zone. The lower panels of Figure 13 show that this variablity
is present over at least four orders of magnitude of spatial scales.

From Figure 13, it’s difficult to tell whether the positive values of
A are highly variable or sharply clustered about the median. Hence, in
Figure 14 we show cross sections of actual pixel values of A along a ver-
tical centerline of each panel of Figure 13. It is clear that the variability
of ) is substantial at all scales considered. Of course, for any fixed 7, it
is a consequence of regularity theorems for differential equations that
the estimate A must be a smooth function of space. However, because of
the exponential divergence of neighboring trajectories, the spatial scale
at which one begins to see the smoothness decreases exponentially with
increasing 7.

The physical implications of these results are twofold. The first
concerns mixing times, a crucially important physical characteristic of
the flow. Figure 11 showed that mixing proceeds in two stages, becom-
ing diffusive only after the blob is stretched out over a distance com-
parable to the scale of the large-scale flow. The Lyapunov exponent
approximates the time occupied by the first stage of mixing, our results
suggesting a fractal pattern in the spatial distribution of Lyapunov ex-
ponents. Thus, in the limit of arbitrarily small initial blobs, the time it
takes for the blob to become well mixed is arbitrarily sensitive to initial
conditions. The second implication is that the rate of predictability loss
is not very predictable. There are clearly macroscopic regions of tori
in Figure 13, within which there is no predictability decay. However,
within the fractal region of ), the predictability of an given trajectory
can differ wildly from that of its nearby neighbor.

6. Conclusions

We have given several examples here illustrating the power of the corre-
lation dimension analysis as a tool for probing the patterns of variability
in the atmosphere and in atmospheric models. Along the way, we have
encountered a number of interesting dynamical systems, not least the
atmosphere itself. The analysis picks up an expected one-dimensional
component of atmospheric variability associated with the periodic sea-
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Figure 14. Cross section of values of A along a vertical line at the
centers of the three panels of Figure 13.

sonal cycle. For somewhat smaller amplitudes of fluctuation, it also
reveals an additional two degrees of freedom linked to the seasonal cy-
cle. The nature of this motion is obscure, and the next challenge will
be to find some way to isolate the sequence of spatial patterns associ-
ated with it. For still smaller amplitudes of fluctuations, the indicated
dimensionality is perhaps 20, and certainly less than 100. This regime
is not tied to the seasonal cycle. A much longer record would be neces-
sary to determine whether and how fast the dimensionality increases as
the amplitude approaches zero. It would also be illuminating to carry
out the analysis for higher-resolution data sets from computer models
of the atmosphere’s general circulation.

We are reluctant to conclude on the basis of these results that the
atmospheric evolution could be reproduced with a model containing
a few dozen variables (even assuming one had some way of identify-
ing them.) Our analysis does not convincingly demonstrate that the
embedding space we have dealt with is indeed a phase space. Consid-
erations of vorticity versus streamfunction suggest that, on the micro-
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scopic level, it is indeed unlikely to be a phase space. The picture that
emerges of the geometry of the atmospheric variability is the following:
When we stand far back in the multimillion-dimensional embedding
space of the atmospheric system, the trajectory appears to be confined
to a hypersurface of rather low dimensionality (let us say it is 20).
When we get closer to this hypersurface and take out our magnifying
glass, we see that it is actually thick in several thousand orthogonal
directions, and that the detailed course of the system trajectory de-
pends not just on the projection onto the hypersurface, but also on
knowlege of the value of these additional variables. This leads to sev-
eral intriguing questions: Can one define a flow on the 20-dimensional
hypersurface whose trajectories approximate those of the true system?
As a function of time, what is the uncertainty in the future course
of the true system, given knowlege only of the projection on the 20-
dimensional hypersurface? And, finally, can one define a flow that at
least reproduces the climate, i.e., the statistical behavior, of the true
system projected on the hypersurface?

The correlation dimension analysis does, however, show that the
state of the atmosphere can, in principal, be specified with considerable
accuracy in terms of a few dozen variables. In order to carry out this
data compression, one again comes up against the need to find a way
to determine the modes of atmospheric variability, rather than just its
dimensionality.

We have seen further that the rather low dimensionality character-
izing the large-amplitude fluctuations of the wind fields is not incompat-
ible with the observed spatial complexity of various conserved tracers
in the atmosphere. An example was presented showing that even a
precisely periodic large-scale flow field can produce spatial chaos in the
tracer field it advects around. These tracer distributions on the plane
were found to be characterized by a correlation dimension of very nearly
2. Further analysis revealed a simple connection between the correla-
tion dimension of the spatial pattern and power spectrum of the con-
centration. This connection allows one to rephrase in geometric terms
the search for universal spectra of concentration or vorticity in two-
dimensional turbulence. It provides some insight into the prevalence of
the classical spectra and the circumstances leading to deviations from
the classical spectra.

Finally, there are some striking indications that the very rate at
which trajectories lose their predictability is unpredictable, assuming
there are even small errors in the initial point of the trajectory. The
number characterizing predictability appears to be distributed in a spa-
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tially complex manner. We have made no attempt to formally char-
acterize its variability. The fractal tools employed earlier in this essay
were useful primarily for characterizing the geometry of objects. In the
» predictability of predictability” problem we are dealing instead with a
map assigning a real number to each point in space—or more precisely
a measure assigning the average of the quantity to each small subset of
the space—so the appropriate tool for effecting the characterization is
multifractal analysis.
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