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Abstract--We propose a family of two-dimensional incompressible fluid models indexed by a 
parameter o~e[0,~], and discuss the spectral scaling properties for homogeneous, isotropic turbu- 
lence in these models. The family includes two physically realizable members. It is shown that the 
enstrophy cascade is spectrally local for o~ < 2, but becomes dominated by nonlocal interactions for 
cr > 2. Numerical simulations indicate that the spectral slopes are systematically steeper than those 
predicted by the local scaling argument. 

Incompressible fluid turbulence in two dimensions is of interest because of its applications 
in geophysical problems [1] and because of its role as a computat ionally tractable testbed 
for theories, Spectrally local similarity theories of the inertial range spectrum based on 
Kolmogorov ' s  phenomenology [2, 3] often provide a starting point for such studies. The 
enstrophy cascading inertial range in 2D turbulence has a pathology in this regard; 
assuming the local similarity spectrum, the aggregate straining effects of eddies larger than 
a given scale L just fail to be dominated by the effects of eddies with scales similar to L. 
Hence,  the enstrophy range of conventional 2D turbulence is precisely on the threshold of 
locality [3, 4]. In this note we examine a family of modified 2D fluid equations, which span 
the range between spectrally local and strongly nonlocal behavior.  

The equation for advection of a conserved scalar q in a velocity field with streamfunction 
~p is: 

5,q + J ( %  q) = 0 ( la)  

where J ( A ,  B) = S~AOyB - axB~ yA .  Advect ion of even a passive scalar decoupled f rom 
~p embraces  a rich variety of phenomena  [5, 6], but the 2D hydrodynamic equations are 
distinguished by coupling between q and ~p, which renders the equation nonlinear. The 
form of the coupling determines the degree of locality. We consider the family of couplings 
defined in Fourier  t ransform space by 
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~(k) = - Ik[ -~) (k) ,  (lb) 

where k is the two-dimensional wavenumber  vector,  with magnitude k = Ikl. Essentially, 
qJ(x, y)  is a smoothed form of q(x,  y);  as cr is made larger, the smoothing becomes more 
extreme,  the advecting field becomes more  decoupled from the small-scale structure of the 
advected field, and the problem becomes more spectrally nonlocal. For cr = 2, q is vorticity 
and the equations are the conventional 2D Euler  equations. For o~ = 1, the equations are 
also physically realizable; they govern the evolution of three-dimensional stratified rapidly 
rotating flow with zero potential  vorticity in a semi-infinite domain,  in which case q(x ,  y)  is 
identified with the tempera ture  field on the (flat) lower boundary [7]. In terms of the 
geostrophic streamfunction ~p(x, y,  z, t), the boundary  tempera ture  is 3~O/~z at z = 0. qJ 
satisfies a three-dimensional Laplace equation, and the problem is closed by imposing 
decay conditions at z ~ ~.  This leads to the spectral space expression ( lb)  with a~ = 1. 

Equations ( la ,  b) have two quadratic conserved quantities, namely,  mean energy and 
enstrophy, defined, respectively, by: 

E -  ~ f fwq dx dy and ~ = -~f fq2 dx dy (2) 

in which A is the area of the domain. The power spectra E ( k )  and G(k )  are defined so 
that 

:e ~c 

with G = k " E  = k2(O-1)V, where V is the power  spectrum of the velocity field. If  tr = 2, 
E =  V; if o l=  1, G =  V. The spectral fluxes are defined by D t E = - O k F E  and 3 , G =  
- -gkF  a. In equilibrium, both F E and Fc must be constant. 

The dimensions of Fe/Fc are L 2~. The fundamental  tenet of the Ko lmogorov-Kra ichnan  
scale analysis is that the only available length scale is the local eddy scale k -~. Hence,  since 
the fluxes must be independent  of  k, only one of F e and FG can be nonzero. Nonzero F E 
yields the energy cascading spectrum; since the dimensions of E are L S - " T  -2 and the 
dimensions of  F E are L4-aT  -3, dimensional analysis implies 

E = a(cv)(FE)Z/3k y-", a = a(oO(FE)2/3k r (4) 

7 4 with g = - 5  + 5 o~. This yields the conventional k -5/3 energy spectrum for ct = 2. Following 
similar reasoning, the spectrum in the enstrophy cascading range is 

E = a(o:)(Fa)2/3k Y-~, G = a(oO(Fc)2/3k :" (5) 

7 2 with y = - 5  + 5 o~. For ol = 2, this yields the customary k 1 enstrophy spectrum, while for 
cv = 1, the enstrophy spectrum is k -5/3. The enstrophy spectrum is integrable at shortwaves 
whenever  cr < 2, but diverges like k (2/3)~ for large o~. The spectral shape for o~ = 1 was first 
obtained ref. [7], and has been reproduced in E D Q N M  closure model simulations [8]. 

Following Kraichnan [3, 4, 5, 9] the strain rate due to eddies with scales between 1/k and 
2/k  is k ~ / ( k V ) =  k2-"~ / (kG) .  Substituting (5) for the spectrum, we find that the 
enstrophy cascade is dominated by local strain for oL < 2 and dominated by large eddy 
strain for o l>  2. Notably,  the k -1 local scaling spectrum for o l=  2 is the same as the 
passive scalar spectrum predicted [6, 10] for the strongly nonlocal case in which straining is 
dominated by large eddies with a fixed timescale. Thus, the spectral behavior shades 
continuously over  to the nonlocal scaling as o~ approaches 2 from below. This is because 
the conserved quantity q is coincidentally the straining rate for o~ = 2. Strong deviations 
from the predictions of  local scaling are expected for 0~ > 2. 

Making use of (4), the strain-rate scaling for the energy cascading range is found to be 
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k 4/3-~/3, whence, as is well known, the cascade is already local for a~ = 2. The energy 
cascading range does not become spectrally nonlocal until ol exceeds 4. 

Advection of a tracer by a time-varying large-scale flow typically produces filaments 
whose thickness decreases exponentially with time [5, 6]. The stability properties of such 
filaments shed further light on the locality of the enstrophy cascade. Consider a filament 
with profile q ( y ) =  qmaxf(y/L), which is to be thought of as a local representation of a 
curved filament which is varying slowly in time compared to the growth of instabilities 
upon it. If ( la,  b) is linearized about this profile, it follows from dimensional analysis that 
the wavelength of maximum instability scales with L,  and that the maximum growth rate of 
instabilities scales with qmax L"-2. Large-scale straining with rate e stabilizes instabilities 
with growth rates less than O(e) (see the discussion in ref. [11] for cr = 2). Thus, in the 
presence of large eddy-strain of a given magnitude, filaments always succumb to a 
secondary instability for a~ < 2, instantiating the classical 'large swirls have smaller swirls' 
cascade. For oi > 2 the large-scale strain always suppresses the instability. In the marginal 
case ol = 2, whether or not the filament undergoes secondary rollup depends on the initial 
condition, v i a  qmax/e. 

The scaling of the instability suggests the possibility of finite-time singularities for cr < 2. 
Filament thickness decreases exponentially in time at the local strain-rate, but the local 
strain is roughly proportional to the growth rate of the filament instability (which creates 
the strain). Substituting the instability scaling yields dL/d t  --- -aqmax L~-I. Thus, a filament 
with initial width L0 collapses to zero thickness at time (L~-")/((2 - a:)aqmax ). This agrees 
with the result derived in ref. [8] for c~ = 1. As cr ~ 2- ,  the blowup time diverges and we 
recover global regularity. 

We carried out a series of numerical simulations of l(a, b) with tr = 0.5, 1, 2 and 3. The 
simulations were carried out using a de-aliased spectral model with 5122 resolution and V 8 
dissipation. It was forced by holding the vorticity amplitudes for modes with wavenumbers 
between 6 and 8 fixed, with random, time-dependent phases. The enstrophy spectra 
are shown in Fig. 1, and the spectral slopes calculated in the wavenumber range 
10 < k < 100 are summarized in Table 1. These do not represent true equilibrium results, 
as the inverse energy cascade has not proceeded to completion; the slopes in the enstrophy 
cascading range have nonetheless converged. A calculation carried out at 2562 resolution 
revealed essentially the same inertial range slopes. 

As predicted by local similarity theory, the spectra become steeper as o: is decreased. 
However, the simulated spectra are systematically steeper than the similarity prediction. 
The difficulties in obtaining the local similarity spectrum for conventional 2D turbulence 
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Fig. 1. Power spectra for ol = 0.5, 1, 2 and 3. 
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Table 1. 

ol Slope (actual) Slope (theory) 

0.5 -2 .2  -2 .0  
1 -1 .9  -1 .7  
2 -1 .4  -1 .0  
3 -1 .3  -0.33 

have been discussed extensively in the literature (e.g. ref. [12[). The generalized case we 
have studied exhibits the same anomaly, despite the unambiguous spectral locality for 
o~ < 2. The E D Q N M  model [8] does not yield an anomalously steep spectrum for o: = 1; 
this may reflect a shortcoming in the closure scheme, or it may be indicative of insufficient 
resolution of the inertial range in our calculation. Intermittency corrections [13], or 
coherent  vortex formation [14] may also come into play in steepening the spectra. As ol is 
increased beyond 2, the local similarity theory predicts that the slope continues to become 
more shallow. In reality, the slope for o~= 3 is nearly the same as that for a '=  2, 
suggesting a dominance of the enstrophy cascade by spectrally nonlocal large eddy 
advection, and a crossover to Batchelor-type passive scalar behavior. 

Images of the vorticity fields for or= 1 and 2 are shown in Fig. 2, and show the 
decreasing importance of secondary instability and small vortex formation as o~ increases. 
For o~ = 1, one sees a mix of small vortices, 'curdled' filaments and undisturbed filaments. 
The vortices arising from instability of the filaments are nearly two orders of magnitude 
smaller than the primary vortices at the injection range. This suggests that the finite-time 
collapse discussed above emerges from a sequence of large, discrete spectral jumps, of 
which our calculation has resolved only the first. For cr = 2 the scene is dominated by large 
vortices, large spirals, and smooth filaments. Given the marginal locality in this case, the 
ability of the filaments to resist strain is probably dependent  on the details of the forcing. 
An example showing the coexistence of passively strained filaments with filaments 
exhibiting strong rollup in conventional 2D turbulence is given in ref. [15]. 

It appears that the anomalous spectral steepness commonly found in two-dimensional 
turbulence is not closely related to spectral nonlocality. On the one hand, o: = 2 behaves as 
if the cascade were dominated by large-scale advection, for which Batchelor 's argument 
gives a k -1 enstrophy spectrum. Thus, Batchelor 's phenomenology is failing; the reasons 
for the failure can be most clearly studied in the context of large eddy passive advection 
problems such as Ottino [5] or Pierrehumbert  [6]. On the other hand, the o :<  2 cases 
exhibit anomalous steepness despite spectral locality; the reasons for this breakdown can be 
most clearly studied in the ol = 1 model,  for which the issue is disentangled from the 
marginal locality bedeviling o: = 2. 
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