Supplementary runaway greenhouse problem

January 27, 2014

Problem 0.1 Mathematical properties of the integral for gray-gas limiting OLR.

The limiting OLR at high temperatures for a saturated single-component atmosphere is $OLR_{\infty} = \sigma T_0^4 f(A, \tau_{\infty})$, where

$$f = \int_{\Delta\tau=0}^{\tau_{\infty}} \frac{\exp(-\Delta\tau)}{(1 - A\ln\Delta\tau)^4} d\Delta\tau,$$

where T_0 is the saturation ("dew point") temperature at pressure p_0 and p_0 is chosen such that $\kappa p_0/g = 1$. With this definition of T_0 , $A = RT_0/L$, which is generally a small number. Note that because p_0 depends on the absorption coefficient κ , A depends on the radiative as well as the thermodynamic properties of the gas making up the atmosphere. The object of this exercise is to understand why f, and hence OLR_{∞} , is essentially independent of τ_{∞} .

(a) To get a feel for what range of $\Delta \tau$ determines the value of the integral, plot the integrand vs $\Delta \tau$ for A = .01, A = .1 and A = 1. (Note that the latter value is physically unrealistic but is included to make a mathematical point). Carry your plot out to the point where the integrand becomes singular. Based on these plots, for what range of τ_{∞} to you expect the integral to be independent of τ_{∞} ? How does this depend on the value of A?

(b) Evaluate the integral numerically and plot the results as a function of τ_{∞} for various values of the coefficient A. Discuss your results.

(c) The τ_{∞} dependence of the integral at very large τ_{∞} is a spurious artifact of the T(p) singularity that comes from having neglected the critical point. Suppose that at very large p, T(p) follows some formula that remains finite for all p, but increases without bound as p increases. What condition does T(p) have to satisfy in order for the integral to be independent of τ_{∞} out to arbitrarily large values?