Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1276-1285

journal homepage: www.elsevier.com/locate/jqsrt

Contents lists available at SciVerse ScienceDirect

Journal of Quantitative Spectroscopy &
Radiative Transfer ransfer

ournal of
uantitative
pectroscopy &
adiative

New section of the HITRAN database: Collision-induced

absorption (CIA)

C. Richard?, L.E. Gordon?, L.S. Rothman **, M. Abel ®, L. Frommhold ®, M. Gustafsson ¢,
J.-M. Hartmann ¢, C. Hermans ¢, W.J. Lafferty !, G.S. Orton &, K.M. Smith ", H. Tran¢

2 Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, Cambridge, MA 02138, USA

b University of Texas, Physics Department, Austin, TX 78712, USA

€ University of Gothenburg, Department of Chemistry, SE-412 96 Gothenburg, Sweden
d Université Paris Est Créteil, CNRS (UMR 7583), Université Paris Diderot, Institut Pierre-Simon Laplace, 94010 Créteil, France

€ Belgian Institute for Space Aeronomy, 1180 Bruxelles, Belgium

f National Institute of Standards and Technology, Optical Technology Division, Gaithersburg, MD 20899, USA
& Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

h Rutherford Appleton Laboratory, RAL Space, Didcot, Oxfordshire, UK

ARTICLE INFO

Available online 12 November 2011

Keywords:

Collision-induced absorption
HITRAN

Atmospheric absorption
Interacting molecular pairs

1. Introduction

ABSTRACT

This paper describes the addition of Collision-Induced Absorption (CIA) into the HITRAN
compilation. The data from different experimental and theoretical sources have been
cast into a consistent format and formalism. The implementation of these new spectral
data into the HITRAN database is invaluable for modeling and interpreting spectra of
telluric and other planetary atmospheres as well as stellar atmospheres. In this
implementation for HITRAN, CIAs of N5, Hy, O, CO,, and CH,4 due to various collisionally
interacting atoms or molecules are presented. Some CIA spectra are given over an
extended range of frequencies, including several H, overtone bands that are dipole-
forbidden in the non-interacting molecules. Temperatures from tens to thousands of
Kelvin are considered, as required, for example, in astrophysical analyses of objects,
including cool white dwarfs, brown dwarfs, M dwarfs, cool main sequence stars, solar
and extra-solar planets, and the formation of so-called first stars.

© 2011 Elsevier Ltd. All rights reserved.

these kinds of molecules, a transient dipole is created,
which causes CIA. The CIA phenomenon plays a large role,

Collision-Induced Absorption (CIA) of infrared radia-
tion by dense gases was discovered in 1949 by Crawford
and coworkers [1], and studies showed that even infrared
inactive gases (such as molecular hydrogen) absorb infra-
red radiation if densities and/or absorption path lengths
are sufficiently high [2-4]. Symmetric molecules, such as
05, Ny, Hy, and CH,4 possess no permanent electric dipole
(magnetic dipole and electric quadrupole moments can
contribute to the absorption). During collisions involving
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for example, in the total absorption of radiation in atmo-
spheres of solar and extra-solar planets [5-8], cool white
dwarfs [9-12], brown dwarfs [13,14], cool main sequence
stars [15,16], and so-called first stars [17-21]. For an
accurate modeling of radiative transfer in these atmo-
spheres, it is essential that reliable spectroscopic data are
available for a variety of temperatures, either in the Earth
atmosphere [22,23] or in the outer planets where the
opacity of the atmosphere, like Jupiter in the far infrared,
is almost totally due to the collision-induced dipoles of
H,-H, and H,-He [2,5,24]. Due to its importance, CIA of
many systems has been studied extensively both experi-
mentally and theoretically. In fact, one of the honorees of
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this special issue, C. Camy-Peyret, helped to organize a
major workshop on this subject [25]. The proceedings
from this workshop contain many informative discussions
of weakly interacting molecular pairs.

Nevertheless, the results of the studies mentioned
above are scattered over the literature and not always
readily available for atmospheric modelers. The goal of
this research is to collect and parameterize, in a consistent
format, opacities due to collision pairs present in the
telluric and planetary atmospheres. Not surprisingly we
have started with the complexes relevant to the Earth
atmosphere, such as N,—Nj, N»,-0,, and 0,-0,. Also, Hy-
H,, H,-He, H,-CH,4, and CH4-CH,4 structures are incorpo-
rated to aid studies of the giant gas planets, while H,-N,
and N,-CH,4 are required for modeling of the atmosphere
of Titan, and 0,-CO, and CO,-CO, for Venus. More recent
opacity data for temperatures where substantial rovibra-
tional excitations and even dissociation of H, occur are
also included for applications to “cool” stellar atmo-
spheres. These parameters have been incorporated into
the HITRAN (HIgh resolution TRANsmission) database
[26] and will be invaluable for modeling and interpreting
spectra of a great many types of astronomical objects.

Various calculations and measurements of CIA available
in the literature are represented in a great variety of formats
and units. Therefore, the first goal was to decide how the
data would be stored in a universal consistent format.
Section 2 of this article presents this new format and
describes the conversion that is needed to obtain consistent
units. Section 3 presents CIA systems being added into the
HITRAN database in this first phase. The compilation is
available on an anonymous ftp site. Instructions for acces-
sing the database can be found in the HITRAN web site
(http://www.cfa.harvard.edu/HITRAN).

We mention that a previous database, which still has
great validity and has been widely used for planetary
work, is due to Borysow [27]. Various spectral bands of
the systems H,-H,, H,-H, H,-He, H-He, H,-CH,4, H>-Ar,
N>-N>, Nz—CH4, N>-H>, CH4—CH4, CH4—AI', and COz—COZ
were given. Parts of this database are somewhat out of
date, and an error that affected only the distant blue wing
of the profile has been noticed in Hy-H, [28]. Never-
theless, while certain improved intermolecular potentials
and induced dipole surfaces may now be available as
input for such calculations, much valuable material still
remains in Ref. [27] and is referenced appropriately
below.

2. HITRAN format for CIA

To date, only the oxygen collision-pair data (0,-0,) from
Greenblatt et al. [29], in a range of 9000-30,000 cm ™!, had
been provided in HITRAN. These data were given in the
same format as the HITRAN IR (infrared) and UV (ultravio-
let) cross-sections [30]. This structure presented several
inconveniences to the users: (1) the units' of CIA intensities

! The units used for the HITRAN database, and the radiative-transfer
codes with which it must maintain consistency, do not strictly adhere to
SI units. In particular, cm is employed rather than m.

(cm® molecule ~2) are different than those for cross-sections
(cm? molecule™1); (2) the cross-sections are presented in
sets corresponding to different temperatures and pressures
whereas CIA is traditionally density-normalized (that is why
in the sets of Greenblatt et al. [29] data in HITRAN pressure
is not given in the corresponding field); (3) because CIA are
density normalized they do not require such extensive
storage space as cross-sectional data, and they have not
been cast into grids of equal wavenumber spacing (whereas
the absorption cross-sections in HITRAN use that space-
efficient but less convenient format). It was therefore
decided to assign a unique format to CIA to distinguish it
from the other absorption phenomena in the database.

Spectral lines and bands listed traditionally in HITRAN
collections typically arise from individual atoms or mole-
cules. With increasing gas densities, their line shapes vary
in diverse ways, but typically additional intensities should
not arise, other than a linear increase with density.
However, it has long been known that if densities are
increased sufficiently from very low to moderate, new
intensities quite generally appear that vary as density
square, cube, etc., such that the virial expansion of
intensity is

I=hp+Lp*+- -, 1

where p is the numerical density. For infrared inactive
gases, the leading coefficient vanishes (I;=0) in the
infrared region. A density-squared dependence reflects a
supermolecular origin, namely from two interacting
atoms or molecules, which may either be bound (as a
van der Waals molecule) or free (as a collision pair).
The conversion from intensity units to cross sections
(as done in the HITRAN compilation) renders the units
of the second virial cross sectional coefficient as
cm® x molecule 2, which differs by the units of volume
from the leading term, just like any other second virial
coefficient (e.g. of the equation of state). The reason is that
the probability of absorption (or emission) must be
referenced to the number of pairs of molecules in a given
volume, as opposed to the density of molecules.

The CIA data in HITRAN are presented in a three-
column format. Each data set starts with a header of
information, followed by the absorption data. The absorp-
tion data are provided as follows: the first column con-
tains the wavenumber in cm~', the second column the
binary absorption cross-section in cm® molecule~2 and,
finally, the third column, the known uncertainty in
cm® molecule 2 (if available). The advantage in switching
to a 2- or 3-column format is to be able to work more
easily with any commercial or homemade software. It is
important to mention at this point that data are not
always interpolated, especially in the case when they
originate from experiments. The header of information
is similar to the headers used with the current IR and UV
cross-sections in HITRAN. This header is illustrated in
Fig. 1. The resolution is in cm~! but a flag of value —0.999
has been chosen in the cases when this information is
not available (for instance, in the case of calculated data).
The “comments” field is employed to give information on
the system: for example, the range of pressures where
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Chemical symbol Wavenumber Number
Minimum Maximum of pts.
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Fig. 1. Header used for CIA. The chemical symbol and comments are right adjusted; the resolution is in cm~! (a flag of value —0.999 has been employed

in the cases where the values are not available).

data are valid (if available) or the percentages of gases in a
mixture used in the experiments.

It is worth noting that a large portion of the experi-
mental and theoretical data available in the literature is
given in cm~ ! amagat 2 as a function of wavenumber in
cm~ . The amagat unit is used to quantify the numerical
density. For a consistent format, these units have been
converted into cm® molecule 2 by dividing the values in
cm~ ! amagat—2 by the square of Loschmidt’s number.
This number, which is the number of molecules per cm?
at standard temperature and pressure (STP), is written as

No = (10*6),%"0, 2)

where Tp=273.15 K, po=101,325 Pa, and k is the Boltzmann
constant.

No = 2.6867774 x 10" cm 3 3)
so that
1 amagat = 2.6867774 x 10" molecules cm™3. 4)

In summary, the conversion of units used in this paper is
given by the following expression:

121,22
I(cm® molecule™2) = mmm‘l amagat=2), (5)
0
with
127,272
M =1385x10"%
Py

The overall structure of the CIA portion of the HITRAN
compilation is similar to other major sections of HITRAN.
There is an upper level folder containing the data as
described above. For some data that have been judged
to be less reliable, but yet useful in the sense that they are
unique, we have relegated them to sub-folders at a lower
level that we call “alternate” folders.

3. CIA data
3.1. N»>-N,, N>-H,, and N,-CH, collision pairs

In this section we discuss Ny-related collision pairs,
which are relevant both to the atmospheres of Titan and
the Earth. We used tables created from Refs. [31-33] in
which interpolated roto-translational data for these systems
are reproduced. The columns in these coefficient tables
represent ten temperatures that are spaced logarithmically
between 40.0 and 400.0 K. Originally, each system had 2428
spectral points spaced by irregular wavenumber increments
in the 0.02-2428 cm~! region. However, it is important to
note that these data only contain calculations for roto-

translational bands, although they cover the spectral range
that extends to the fundamental band of N, (without
presenting the CIA for the fundamental band). A good
example is given in Fig. 2, where the fundamental band of
N, is not calculated in Ref. [31], showing no apparent CIA
near 2300 cm~! while experimental data from Ref. [34]
(discussed below) show the fundamental band centered near
2300 cm ™~ ' (4.3 um). We therefore disregarded or set to zero
the data in the far wings when the ratio of intensity to peak
intensity became smaller than 0.001, as these data are not
reliable. The new cutoff wavenumber for each system is
given in Table 1. As the source data are theoretical, the
“value” of the resolution is set to a “flag” value of —0.999.
A similar treatment was given for tables of roto-translational
N,-H, absorption [32] and N,-CH, absorption [33]. Never-
theless, coefficients of N,-CH, CIA, determined by Borysow
and Tang [33], may be systematically in error, especially
where temperatures are near those of CH, saturation (where
phase changes are likely). Consequently, Anderson and
Samuelson [35] adopted a correction function, strictly heur-
istic, for the N,—CH,4 CIA values. The data for this complex
have been thus relegated to the alternate folder.

The N,-N, data from experimental measurements at
higher wavenumber corresponding to the fundamental band
of N, near 4.3 pm were provided in Refs. [34,36], resulting in
two different sets, one from Ref. [34] (low temperatures:
228-272 K) and one from Ref. [36] (high temperatures: 300-
362 K). These data are important and used, for example, in
the determination of the pressure/temperature vertical pro-
files of CO, in the Earth’s atmosphere [37].

Measurements in Ref. [34] have been made in the 0-
10 atm pressure and 230-300 K temperature ranges with
a Fourier-transform spectrometer (FTS) at a resolution of
0.5cm™!. The original data were provided in five files
corresponding to five temperatures: 228.15, 233.65,
243.15, 253.15, and 272.15 K. Each file is provided with
wavenumbers from 1999.9 to 2697.9 cm ™!, intensities in
cm~!amagat~2? and uncertainties in cm~!amagat?
(except for one file where we do not have uncertainties:
243.15 K). Eq. (5) was applied when creating a file in the
HITRAN formalism.

Measurements in Ref. [36] have been made at pressures
up to 8 atm and a resolution at 0.3 cm~ . The original data
contain measurements at five temperatures (300-370 K) in
one file with 6 columns: the first column contains wave-
numbers from 1850.004 to 3000.094 cm™~ !, the others are
the intensities in 107 cm~! amagat 2 at, respectively, the
following temperatures: 300.9, 323.6, 343.5, 355.3, and
362.5 K. Eq. (5) was used (with a scaling factor of 10~°) to
convert to HITRAN format.

The summary of the N,-related and other data studied
in this work is given in Table 1.
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Fig. 2. Comparison between data from Refs. [31] and [34]. The contribution from the fundamental band is not calculated in Ref. [31], while experimental
data from Ref. [34] show this band centered near 2300 cm~' (4.3 um). Therefore, the theoretical data corresponding to wavenumbers before the arrow
were retained for HITRAN. Refer to Table 1 to see the selected CIA spectral ranges in HITRAN.

Table 1
Summary of the data that form the new CIA section of the HITRAN database.

CIA system Spectral range Temperature Number Band(s) Reference
(cm™1) range (K) of sets
N>-N, 0.02-554 40-400 10 Roto-translational [31]
2000-2698 228-272 5 Fundamental [34]
1850-3000 300-362 5 Fundamental [36]
N,-H, 0.02-1886 40-400 10 Roto-translational [32]
N,-CH,4 0.02-1379 40-400 10° Roto-translational [33]
H,-H, 0.02-2400°/2400¢ 40-400 10° Roto-translational [28]
20-10,000 200-3000 113 Roto-translational, [38]
Fundamental, 1st overtone
H,-He 0.02-2400°/2400¢ 40-400 107 Roto-translational [39]
20-20,000 200-9900 334 Roto-translational, [40]
fundamental, 1st to 4th
overtone
H>-CH4 0.02-1946°/1946¢ 40-400 10 Roto-translational [41]
H,-H 100-10,000 1000-2500 Roto-translational, [42]
fundamental, 1st overtone
He-H 50-11,000 1500-10,000 10 Roto-translational [43]
0,-0, 1150-1950 193-353 15 Fundamentzil [36]
7450-8487 253-296 3 a'dg—X 3% (0-0) [44]
9001-9997 296 1 a'Ag—X3%, (1-0) [29]
12,600-13,839 200-300¢ 1 A band . [45]
14,996-29,790 294 1 a'dg+a'dg, Ty +a'dg, [46]
and b'Z, +b'%,
0,-N, 7500-8600 200-295 7 a'dge X%, (0-0) [47]
9000-10,000 200-295 5 a'Ag— X3, (1-0) [47]
12,600-13,839 200-300¢ 1 A band [45]
0,-CO, 12,600-13,839 200-300¢ 1 A band (48]
C0,-CO, 1-250 200-800 7° Roto-translational [49]
CH4-CH4 0.02-990 40-400 10° Roto-translational [50]
CH4-Ar 1-697 70-296 5 Roto-translational [51]

2 Provided in the alternate folder.
b Refers to the “equilibrium” data (defined in Section 3.2).
¢ Refers to the “normal” data (defined in Section 3.2).

9 In this specific case, data between 200 and 300 K are the same and the temperature chosen for HITRAN is 296 K (room-temperature).

3.2. H»-H,, H>-He, H>-CH,4, and H>-H collision pairs

In this section we present Hs-related data that are
relevant to the atmospheres of the outer planets and
astronomical objects of elevated temperatures where

significant roto-vibrational excitation and even dissocia-
tion of H, occurs. Two independent sets of data are
considered for the roto-translational band of H,-H, and
H,-He. Data provided in Refs. [38,40] possess several
bands. The files are labeled by temperature, which goes
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Fig. 3. Absorption coefficient a(v, T), normalized by the numerical densities p; and p, of hydrogen and helium, respectively.

from 200 to 3000 K for H,-H, [38] and up to 9900 K for
H,-He [40] by steps of 25 K (or higher at higher tempera-
tures). These files are tabulated from 20 to 10,000 cm ™!
for H,-H, with the roto-translational, the fundamental
and the first overtone bands, and up to 20,000 cm~"' for
H,-He (roto-translational band, fundamental, and first to
fourth overtone bands) in steps of 20 cm~!. In order to
obtain a finer wavenumber step (1 cm™1!), every file is
interpolated with a Lagrange interpolating polynomial
function. Interpolation was carried out 5 points by
5 points until the end of the file. Since the data are
interpolated, the value of the resolution field is —0.999.
Fig. 3 shows the absorption coefficient o(v, T) of H,-He,
normalized by the numerical densities p; and p, of
hydrogen and helium, respectively. The six absorption
peaks, which are readily discernible at the lower tem-
peratures, correspond roughly to the rotational, funda-
mental, and the lowest four overtone bands of H, (which
are dipole-forbidden in the low-density limit).

Additionally, Ref. [42] provided data for the roto-
translational, fundamental, and first overtone band of
H,-H obtained by quantum mechanical calculation. These
data cover the temperature range 1000-2500 K and have
been interpolated with a cubic function and converted
into the HITRAN format introduced here; so the value of
the resolution field is —0.999 and spectral points are
spaced by 1-cm~! increments.

Finally, an alternate folder is provided with files only
containing the roto-translational band that covers the
temperature range 40-400 K for H,-H, [28] and H,-He
[39] in the same format as for the N, pairs described
above. These files (and the file of H,—CH, provided in
the primary folder) are given in two versions: one

corresponds to “equilibrium” ratio of para/ortho H, at
local thermal equilibrium and another one to “normal”
ratio which refers to the high-temperature asymptote
with a 3:1 ratio of ortho-H, to para-H,. The terms
“normal H,” and “equilibrium H,” are technical terms.
The former refers to ratios of oH, and pH, of 3:1 as
encountered at temperatures above roughly 200 K (after a
long equilibration period). The latter applies to lower
temperature hydrogen in thermal equilibrium where the
oH, : pH, ratio is smaller. In hydrogen gas, equilibration
may take thousands of years (Jupiter) unless equilibration
is artificially accelerated, for example by providing para-
magnetic ions (at the container walls) to flip proton spins
more effectively. The summary of the Hy-related data is
given in Table 1.

3.3. He-H collision pair

Using a rigorous quantum mechanical formalism,
Ref. [43] provided calculated Collision-Induced Absorp-
tion data in the 50-11,000 cm~! region of He-H. The
roto-translational band is given for 10 different tempera-
tures from 1500 to 10,000 K. Similar to the treatment for
the (H,-H) pair, these sets have been interpolated with a
cubic function and converted into the HITRAN format.

3.4. 0-0,, 0:-N,, 0,-CO, and CO,-CO; collision pairs

0,-0, and 0,-N, CIA is observed in the Earth atmo-
sphere [52,53], while 0,-CO, and CO,-CO, CIA is
observed in the atmosphere of Venus [49,54]. In this
section we discuss different absorption bands of oxygen
associated with these collisional partners, as well as the



C. Richard et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1276-1285

roto-translational band of CO,-CO,. Note that in the
experimental works on 0,-X systems, contributions to
the absorption from collision complexes and van der
Waals complexes are not separated, but in this case the
latter is not known to have a noticeable contribution at
atmospheric temperatures. The summary of these data is
given in Table 1.

3.4.1. Roto-translational band (CO»-CO,)

CIA of gaseous CO, is the primary source of far-infrared
opacity of the atmosphere of Venus and this absorption is
mainly due to binary collisions at Venusian temperatures
and pressures [49]. These data have been obtained by
calculations in the temperature range 200-800 K. The
roto-translational band has been determined at frequencies
from 1 to 250 cm~ ! in steps of 1 cm~! in cm ™~ ' amagat 2
and converted into the HITRAN format. Nevertheless, these
data should be used very carefully as discussed below in
Section 4, and for these reasons the CIA data for this system
have been relegated to the alternate folder.

3.4.2. Fundamental band (0,-0,)

The 0,-0, data from experimental measurements cor-
responding to the fundamental band of O, in the electronic
ground state (X°Z; ) were provided in Ref. [36], in a set of
data corresponding to 15 temperatures (193-353 K).
The pure O, spectra were recorded at 0.5 cm™! resolution
from 1150 to 1980 cm~! and the pressure was limited to
~ 400 kPa (4 atm). The original data contain a file with 15
columns in 10~ cm~! amagat~2; Eq. (5) was used (with a
scaling factor of 10~°) to provide a file in the HITRAN
format.

34.3. a'A;«X’T,; (0,0) Band (02-03 0,-N3)

Monomer and binary cross-sections of the a' 4z« X3%g
(0,0) and (0,1) bands and underlying continuum absorptions
of oxygen centered near 7883 and 9400 cm~' (1.27 and
1.06 pm) have been recorded by Smith and Newnham [47]

1281

determined for three different percentages of oxygen in
nitrogen (21%, 50%, and 75%), three different temperatures
(200, 230, and 295 K, while 295 K is only for 1.27 um) and
all approximately at the same pressure of 100 kPa
(~750Torr). Data files have been converted into the
HITRAN format introduced here. Although these data are
at a relatively low spectral resolution (0.5 cm~'), they are
given with known uncertainties. During the preparation of
this paper, it was noticed that a simple processing error had
affected one of the original cross section data files. The
1.06-pum cross section previously attributed to 33% oxygen
at 130 K should in fact have been 50% oxygen at 200 K. The
error affected both the header information and the spectral
data contained in the original file. During conversion of the
cross section to HITRAN format, correction of these data was
carried out by applying a factor of 1.5 to all pressure,
temperature and spectral intensity data of this one file. It
is believed that the original error has now been fully
corrected.

The magnetic dipole-allowed rovibrational transitions
have not been subtracted, and an example at 228 K
in the region of 1.06 um is given in Fig. 4 (note that the
allowed absorption in this region is very small with
respect to the CIA intensity: at 296 K it is about
4x 1077 cm? amagat !, compared to 2 x 10~* for 0,/0,
and 1.5 x 107> cm? amagat~2 for 0,/N, [45]). Because of
the lack of room-temperature data for the band at
1.06 um, another set of data for this region has been
chosen, recorded by Greenblatt et al. [29] at a tempera-
ture of 296 K. Absorption spectra were measured at
various O, pressures up to 55atm at a resolution of
6cm~! (0.6 nm). As stated previously, these data were
already available in HITRAN but in another format
adopted from cross-sections. However, only the part from
9000 to 10,000 cm~! (1.06 pm) of Ref. [29] is provided in
the CIA section of HITRAN described in this work. The
original data have been converted to vacuum wavenum-
bers and subjected to an IDL-based weighted Singular

using a high-resolution FTS. These cross-sections were Value decomposition wusing higher-order Legendre
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L I L | 1 I L | L 1 L | I L L | I L I |
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Fig. 4. Comparison between O, absorption data from Ref. [47] (with magnetic dipole-allowed rovibrational transitions) at 228 K and data from Ref. [29]

at 296 K in the range of 9000-10,000 cm~! (1.06 pum).
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Fig. 5. Collision-Induced Absorption cross-sections of oxygen measured in the UV and visible region in Ref. [46].

polynomials (with negative values in the original data
set to 0).

For the pure 0,-0, mixture in the 1.27-pum band, the
data obtained in Maté et al. [44] were adopted. Note that
in the latter work, the magnetic-dipole transitions were
subtracted, using values from Lafferty et al. [55]. This
experiment was carried out at both 0.05 and 0.5 cm ™!
resolution for three temperatures: 253, 273, and 296 K.
However, the 0.05cm™! resolution was only used for
lower-pressure runs.

34.4. A band (02—02, 0>-N>, Oz—COZ)

Collision-Induced Absorption by oxygen in the region
of the b'E, (v=0)«<X3%, (v=0) transition (A band) near
760 nm has been measured by Hartmann et al. for pure O,
and O,-N, mixtures [45] and O,-CO, mixtures [48] with
a FTS (resolution 0.5 cm~1). The experiments were carried
out under pressures in a range from 20 to 200 atm for
pure O, and 0,-N; and up to 80 atm for O,-CO, mixtures.
These experiments showed that between 200 and 300 K
the temperature dependence is small and, although there
may be such a dependence, it is within experimental
errors. We therefore conclude that it is relatively safe to
use the same set of data for temperatures between 200 and
300 K. The files in the HITRAN format are provided with a
temperature indicated at 296 K, which is the HITRAN
standard. The spectral range is from 12,600cm~! to
13,839 cm~'. The uncertainties were not provided and the
resolution was given at 0.5 cm ™.

3.4.5. UV and visible (0,-0,)

Collision-Induced Absorption cross-sections of oxygen
have also been measured in the UV and visible region by
Hermans [46] as shown in Fig. 5. These experiments
were carried out under pressures from 300 to 700 Torr in
a range of 14,996.5-29,789.6cm~! at a resolution of
2 cm~ !, The wavenumbers have been converted to vacuum
wavenumbers, and negative values of the absorption have
been retained. Several band systems at a temperature of
294 K have been incorporated into HITRAN in this set of
data: (1) a1Ag+a1A§(v’=O, 1,2); (2) b'Eg +a'dy (v =0,1);
and (3) b'E, +b'Z, ('=0,1,2).

3.5. CH4,~CH,4 and CH4-Ar collision pairs

The atmospheres of the outer planets are mainly
composed of hydrogen. However, different species such
as He, Ar, and CH,4 are also observed. Since these species
are at best weakly infrared active, CIA spectra involving
these complexes are responsible for much of the observed
opacities in the infrared region.

Quantum mechanical computations of the roto-trans-
lational absorption spectra of CH4—-CH,4 pairs have been
performed in Ref. [50]. This system has 2428 spectral
points spaced by irregular wavenumber increments in the
0.02-2428 cm~ ! region and covers a temperature range
from 40 to 400 K. The units have also been converted from
cm~ ! amagat~?2 into the HITRAN format and the resolu-
tion is set at —0.999. Nevertheless, these data should be
used with caution as discussed in the Section 4 and this is
why the CIA data for this system have been relegated to
the alternate folder.

Regarding CH4-Ar, Ref. [51] provided data in the roto-
translational band between 1 and 697 cm~! by steps of
2 cm™! for five different temperatures from 70 to 296 K.
CIA tables have been interpolated with a cubic function
and converted into the HITRAN format with a resolution
set at —0.999. These data are based on an unpublished
model with an accuracy expected to be within + 15-20%.
As a consequence, the data for this complex have been
relegated to the alternate folder.

4. Discussion

The data listed in Table 1 were obtained in three
different ways: pure laboratory measurements, semi-
empirical models, and ab initio calculations [2]. At this
point the HITRAN collection comprises only binary spec-
tra; collision-induced spectra arising from three or more
interacting atoms or molecules are poorly understood and
are at present not considered here. Moreover, the range of
temperatures of interest for any application should be
considered. CIA spectra vary with temperature and data
obtained for high temperature should not be extrapolated
from low temperature data, and vice versa. In rare cases
unified CIA data are available that are good for
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temperatures ranging from a few tens of Kelvin to many
thousands, and for frequencies from the microwave
region to the visible (or beyond).

The following remarks illuminate the three origins of
the CIA data:

(a) Laboratory measurements exist, which are absolutely
reliable only if their binary nature was demonstrated
beyond doubt. In other words, CIA arises from super
molecular complexes of two, three atoms or
molecules. The intensity of spectra of purely binary
complexes varies as the square of (numerical) density
p in unmixed systems; intensities of dissimilar com-
plexes are proportional to the product of individual
densities p; and p,. Unless such a “quadratic” density
dependence was demonstrated,? the measurement
may be an unresolved mixture of binary, ternary, ...
components that cannot readily be applied to other
environments, especially if the measurements were
made at high densities (e.g. hundreds of amagats
(“virial expansions of CIA intensities” [2])), or near
spectral wavelengths which are comparable to, or
greater than the distance traveled between collisions
(“intercollisional interference” [2]).

(b) Classical multipole models are fairly accurate if the
collisional partners are highly polarizable and if the
relevant and significant molecular multipoles are
known well enough; a good (accurate) model of the
intermolecular potential is also needed. Where good
laboratory measurements exist, classical CIA multi-
pole models are often embellished with small empiri-
cal corrections that are supposed to correct for the
main defect of the classical multipole model, the
neglect of exchange and overlap processes. When
these empirical corrections are small, the resulting
model may be quite reliable.

(c) Ab initio calculations require the use of quantum
chemical techniques suitable to describe the weak
van der Waals calculations accurately. Such techni-
ques today are highly developed and excellent
induced dipole and potential energy surfaces continue
to become available, which with the help of quantum
scattering calculations permit computations of the
CIA spectra at nearly any frequency and temperature.

The above discussion is valid as stated for collisional
complexes involving any atom or diatomic molecule. If
molecules with three or more atoms, such as CH4, CO5 ...
are involved another consideration may be important.
The principal induction mechanisms of binary atom or
diatomic complexes are electron exchange, overlap and
dispersion interactions, multipolar induction, and disper-
sion interaction, which may wusually be modeled
(or approximated) by simple functions, such as exponen-
tials and inverse power laws 1/R", with R being the
collisional separation and n some integer. These processes
persist if bigger molecules are involved, but another,

2 In the low-density limit, the intensity of ternary complexes varies
as density cubed (p?), etc.

additional mechanism arises: frame distortion. For exam-
ple, the CH4 molecule possesses four very strong dipole
moments along the H-C bonds, which in the non-rotovi-
brating molecule exactly add up to zero (cubic symme-
try). However, the slightest perturbation of the symmetry,
for example by centrifugal forces of the rotating molecule,
or by certain vibrational modes, or by collisional frame
distortion, induces strong dipole moments resulting in
infrared spectra. The former two perturbations cause
spectral components of their own, even in the non-
interacting molecules, as are well known for years (see
HITRAN for the CH4 line lists). The latter (collisional frame
distortion) will add CIA contribution in addition to the
more familiar collisional induction mechanism, multi-
polar induction and exchange/overlap induction. The
cubic frame of the CH, molecule is known to be very
“soft”, the CH4 molecule is very elastic or “floppy”. It does
not take much to distort the cubic frame so that sizable
dipoles and spectral components appear, which produce
both the monomer infrared spectra and different kinds of
CIA components, by collisional frame distortion. Thus far,
theory has not yet attempted to describe the latter in any
detail. Consequently, in all existing CIA calculations the
expected effect on the spectra arising from frame distor-
tion is simply missing for collisional systems like CH4-X.
It is therefore not too surprising that existing theoretical
CIA estimates of CH4—X are not as reliable as their H,-H,,
H,-He counterparts [56-58].

We note that CO, has strong internal dipoles along the
0O-C bonds, which cancel in the linear configuration, much
like the H-C bond dipoles of CH,4 cancel in the undistorted
cubic frame. However, in bending-mode vibrations, a
sizeable “permanent” dipole arises which gives rise to
both infrared activity (monomeric IR spectra) and colli-
sional frame distortions, which when breaking the sym-
metry cause CIA. Similar frame distortions may be
expected in most other molecules consisting of three or
more atoms. This has consequences for both theory and
measurement that one should keep in mind.

Theory does not know how to account for collisional
frame distortion—or at least existing theoretical CIA
treatments have ignored collisional frame distortion, or
have modeled it in completely inadequate ways. There-
fore the existing theoretical treatments of CIA of such
molecules are not necessarily reliable.

Measurement has often ignored the now well known
IR activity of CH4 (and other) molecules. In other words,
laboratory measurements of CIA of methane and other
gases were sometimes assumed to be of a binary (colli-
sion-induced) origin when actually some monomeric
contributions were present that, however, remained
undetected or were ignored. Such empirical opacity data
actually depend on density in a mixed linear and quad-
ratic way so that they should not be directly applied to
other environments, or for modeling empirical opacities
with analytic functions for applications.

5. Conclusion

The details of the update of the HITRAN compilation
with Collision-Induced Absorption data have been
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described in this paper. The collision systems considered
have been converted into a consistent and user-friendly
format with a FORTRAN code and are provided in the
database. The bibliography linked to the data files is also
provided. This step is the beginning of the CIA data
collection; in consequence this is a prelude to some
upcoming improvements. Many complexes are of interest
like CH4-X and CO,-X. The compilation is free; access
instructions can be obtained at http://www.cfa.harvard.
edu/HITRAN. Updates to this collection will be made on a
regular basis to correct, refine, and further expand the
data base.
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