
Geosci 342 Problem Set 3

February 23, 2009

Problem 3.1 Consider a fluid on a rotating plane (β = 0) which is ini-
tially at rest. There is a ridge h(x) at the bottom boundary, with h =
h0 exp(−x2/L2). At time t = 0 a uniform flow U in the x-direction is sud-
denly turned on and the fluid begins to ascend the upwind slope and descend
the downwind slope.

(a) After a short time ∆T has passed, what does the vorticity look like
over the ridge? Explain your sketch in terms of vortex stretching.

(b) After a long time has passed, what does the vorticity look like over
the ridge? Sketch the direction the streamlines bend over the ridge...

From here on all wind velocities and spatial derivatives (including the
material derivative) are measured in the rotating reference frame. We’ll use
the potential vorticity conservation equation derived in class to guide our
sketch of the time evolution,

dgω

dt
= −2Ω

D

dh(x)

dt
(1)

For this problem the material derivative of the vorticity (ω = ωrel+2Ω) is just
the material derivative of the relative vorticity (ωrel), because the vorticity
due to the rotating plane (2Ω) is constant in time and constant in space
(β = 0), which means the material derivative does not include any advection
of Ω by the wind. In problem 3 we will explore what happens when Ω varies
in the y-direction.

Writing (1) as the conservation equation used in the second problem set,

dg

dt

(
ωrel +

2Ω

D
h(x)

)
= 0 (2)

Consider two columns in the flow, one initially upstream (windward) of the
ridge and another initially at the top the ridge. Both columns have ω = 0 at
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t = 0 because the flow is initially at rest. Potential vorticity conservation tells
us that the initially windward column will acquire negative relative vorticity
(ω < 0) as it moves from the windward side to the top of the ridge, but as
this same column moves from the top down to the lee side of the ridge the
relative vorticity will return to what it was on the windward side (ω = 0)
since the height returns to h = 0.

By contrast, the relative vorticity of the column initially at the top of the
ridge will increase (ω > 0) as it moves down the lee side, since the height
decreases, creating an area of cyclonic relative vorticity to the lee of the ridge.
We conclude that by starting the flow from rest we end up with different
regions of the flow having different values of potential vorticity depending on
their initial positions relative to ridge. This result follows directly from the
conservation of potential vorticity (equation 2).

To see what happens to the area of cyclonic rotation at a much later
time we can expand the material derivative to include the local time rate of
change and the advective change,( ∂

∂t
+ U

∂

∂x

)(
ω +

2Ω

D
h(x)

)
= 0 (3)

This equation says the local time evolution of potential vorticity (first LHS
derivative) is determined by the advection of potential vorticity at a point in
space by the mean wind U . As the column of cyclonic relative vorticity to
the lee of the ridge moves further away from the ridge its potential vorticity
is conserved (the second quantity in parentheses is constant); furthermore
its relative vorticity is conserved because the surface height does not change
away from the ridge. This means the cyclonic relative vorticity to the lee of
the ridge will move at the wind speed U .

If the advection of cyclonic relative vorticity away from the ridge is not
intuitively clear, you can also assume solutions of the form

ψ′ = ei(kx−ωt) (4)

Plugging equation (4) into equation (3) for the region away from the ridge
(h = 0) and using ω = ∂2ψ′/∂x2 gives,

(−ωk2 + Uk3)ei(kx−ωt) = 0 (5)

which requires

c =
ω

k
= U (6)
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This means the area of cyclonic relative vorticity on the lee side of the ridge
can be represented as a Fourier series of solutions of the form (4) that travel
together at a speed c = U , maintaining the shape of the feature as it moves.
After this feature moves away from the ridge the relative vorticity over the
ridge is then determined entirely by the steady state solution, which is qual-
itatively similar to that in problem 6 of the second problem set.

Problem 3.2 For midlatitude motions on Earth, the effective value of β is
about 10−11 m−1 s−1, in dimensional terms. Consider a wave in a current of
30 m s−1 which is confined in a channel with width such that the effective
north-south wavenumber l = 10−6 m−1. The zonal (east-west) wavelength is
10000 km. What is the zonal wavenumber? Using the Rossby wave dispersion
relation, determine which direction a ridge or trough of this wave moves, and
determine how long it takes for a ridge or trough to move 5000 km.

The zonal wavenumber is given by k = 2π/(10000 · 103m) = 6.28 ·
10−7 m−1. The Rossby wave dispersion relation is

c = U − β

(k2 + l2)
(7)

Using the values given above, we have a phase speed of

c = 30 m s−1 − 10−11 m−1 s−1

(6.28 · 10−7 m−1)2 + (1 · 10−6 m−1)2
≈ 23 m s−1

the phase speed is positive, which means the wave moves toward the east. It
takes about 2.5 days (2.17 · 102 s) for the wave to move 5000 km.

Problem 3.3 Consider easterly flow (i.e. U < 0) on the β plane over a
sinusoidal mountain h(x) = h0 sin(kx). What is the streamfunction field? Is
there any phase shift... Now imagine the flow has started up from rest, so
that at t = 0 the flow is a uniform undisturbed current U . Describe how the
superposition of the free and forced wave evolves in time...

The potential vorticity equation (3) with nonzero β is( ∂
∂t

+ U
∂

∂x

)(
ω +

2Ω

D
h(x)

)
+ β

∂ψ′

∂x
= 0

Writing this in terms of the perturbation streamfunction and moving the
forcing to the RHS,

∂

∂t

(∂2ψ′

∂x2

)
+ U

∂

∂x

(∂2ψ′

∂x2

)
+ β

∂ψ′

∂x
= −U 2Ω

D

∂h

∂x
(8)
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The forcing, h(x), is constant in time, so the forced solution should satisfy
the steady form of equation (8),

U
d

dx

(d2ψ′

dx2

)
+ β

dψ′

dx
= −U 2Ω

D

dh

dx
(9)

Integrating once in x and dividing by U ,

d2ψ′

dx2
+ k2

sψ
′ = −2Ω

D
h(x) (10)

where we use the result from class that the stationary Rossby wavenumber is
given by k2

s = β/U . Considering the form of the forcing (h(x) = h0 sin(kx))
we should guess a particular solution A sin(kx), which when substituted into
equation (10) gives

A(k2
s − k2) = −2Ω

D
h0 (11)

Notice that k2
s < 0 because U < 0, and k > 0 because the topographic

wavenumber must be real for a sinusoidal mountain. This means the am-
plitude of the steady, forced solution is positive (A > 0) so that the forced
solution is in phase with the topography. Recalling Prof. Nakamura’s labo-
ratory demonstration, we know that the beta effect is analogous to a change
in the surface height, so it is also analogous to vortex stretching and com-
pression. A steady streamfunction solution in phase with the topography is
possible because the cyclonic motion induced by the beta effect as flow moves
over a ridge (for example) is balanced by the anticyclonic motion induced by
vortex compression and by the advection of relative vorticity over the ridge
(see Figure 1).

For the transient free solution we turn to the time dependent equation
(8) and set the RHS to zero

∂

∂t

(∂2ψ′

∂x2

)
+ U

∂

∂x

(∂2ψ′

∂x2

)
+ β

∂ψ′

∂x
= 0 (12)

Assuming solutions of the form ψ′ = B sin(kx − ωt) and substituting into
equation (12) gives the equation for the coefficients(

− iω + ikU
)

(−k2)− iβk = 0 (13)

which, rearranged, gives the dispersion relation

c = U − β

k2
(14)
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Figure 1: Topography and beta effects in the steady solution for easterly flow
over a mountain.

The sine function was chosen to satisfy the condition that the fluid starts at
rest. The full solution is the sum of the free and forced parts,

ψ′ = A sin(kx)− A sin(kx− ωt) (15)

where we have taken B = −A to satisfy the condition that the fluid start at
rest. From equations (14,15) it is apparent that the free transient solution is
initially out of phase with the topography and moves with a negative phase
speed (c < 0). This rules out the possibility that the transient solution could
be resonant (this requires c = 0, k2 = k2

s). In the long-time limit the solution
consists of a transient wave and a steady wave in phase with the topography.
In the presence of damping the transient wave would decay over time while
the steady forced wave remains. However, since the forced wave cannot be
resonant with the topography it would be more difficult to observe in a real
system compared to the westerly flow case.
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