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1 The van der Waals equation of state

The van der Waals equation of state is an idealized equation of state that takes
into account the finite volume occupied by molecules and the inter-molecular
forces.

By scaling the pressure, density and pressure to gas-dependent values pr,Tr
and ρr, the equation of state can be written in universal (gas-independant) form:

(p̃+ 3ρ̃2)(ρ̃−1 − 1
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where p̃ ≡ p/pr and so forth. Note that at small ρ̃ this reduces to the ideal-
gas equation of state, which makes sence since at low densities molecules are
far apart and there is less chance for them to interact. The extra term in
the first factor on the left hand side represents the intermolecular forces and
the subtraction of 1

3 in the second factor takes into account the finite volume
occupied by the molecules.

The van der Waals equation immediately gives an expression for T̃ (ρ̃, p̃),
and can with a little algebra be solved for p̃(ρ̃, T̃ ). In either case, the formula
immediately implies that there is a unique T̃ or p̃ corresponding to the other
two thermodynamic variables. However to determine ˜rho in terms of of p̃ and
T̃ , one must solve a cubic equation (generally one would do it numerically using
Newton’s method). The cubic can have more than one real root, and in fact it
does for T̃ < 1. This can be shown analytically, but you can easily verify the
property by plotting p̃(ρ̃, T̃ ) for several different values of T̃ , and looking for
which curves are monotonic and which have a maximum (in which case the line
of constant ρ̃ intersects the curve in three places). Make it so, and show some
graphs illustrating this point. The phase transition in van der Waals is qualita-
tively like what happens in actual gases, but it fails to obey certain important
thermodynamic constraints. Hence, the van der Waals equation of state is most
useful away from the phase transition, and in particular for supercritical fluids
(which avoid the phase transition).

For many applications, it is sufficient to compute p̃ or T̃ in terms of the other
thermodynamic variables, but sometimes it is necessary to compute ρ̃ given p̃
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and T̃ . There are two convenient ways to do this numerically. The first is to use
Newton’s method to solve the cubic for ρ̃. The second method, which is only
really workable if your system does not encounter a phase transition, consists
of using the explicit p̃(ρ̃, T̃ ) expression to pre-compute a table of ρ̃ and the
corresponding p̃ on a suitable list of values of ρ̃ covering your range of interest.
For the isothermal case, you’d compute this table for constant T̃ , but for an
adiabatic case you’d compute the table assuming T̃ is on the adiabat. Then
you can interpolate from the table to get the value of ρ̃ for any given p̃. This
amounts to a digital version of plotting the graph p(ρ) and then rotating it to
read off ρ(p).

2 Problems

Problem 2.1 Adiabat for non-ideal EOS

For a non-idea equation of state, it is easiest to compute the adiabat in the
form ρ(T ) by using the First Law in the form

0 = cvdT + pd
1

ρ
(2)

Then, if you need T (p), you can compute it from the equation of state using
these results.

Carry out this calculation using a numerical integration of the First Law,
assuming the van der Waals equation of state written in universal form. As-
sume that cv is constant. Plot results for T̃ (ρ̃) and T̃ (ρ̃) T̃ (p̃), and discuss the
corresponding dimensional values for H2, N2 and CO2.

Problem 2.2 Mass-radius relation for non-ideal EOS

Using the van der Waals equation, compute the mass-radius relation for an
isothermal planet made of H2. For a planet made of CO2. Do the problem for
several different values of the temperature, and discuss how the temperature
affects the ”puffiness” of the planet. In order to avoid the problem of dealing
with the phase transition in the van der Waals equation, you may restrict at-
tention to temperatures such that no phase transition (i.e. multiple solutions
for ρ corresponding to a given p) occurs.

Python Tips: If you use Newton’s method to get ρ, you can use the class
newtSolve in ClimateUtilities to carry out the calculation. Newton’s method
requires a sufficiently good initial guess at the solution, and when you are car-
rying out the integration of the hydrostatic relation, you can save the solution
from the previous r as the initial guess for the next r. In a case with a phase
transition, the solution you get depends on what initial guess you use, but this
isn’t an issue if you avoid the phase transition. If you use the tabulation and
interpolation method, which is only good in a case without a phase transition,
then the class interp can be used to create an interpolation function for you.
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