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Chapter 1

The Big Questions

p. 23, line after Eq. (1.2), ;
Added 11/26/2012

It should be pointed out that the exponent 3.5 in the mass-luminosity scaling
law applies over most of the Main Sequence, but goes down to about 2.3 for
low-mass stars, below about 0.4M�.

Eq. (1.3), p. 23 (Erratum);
Added 11/26/2012

The exponent in the equation should be .71

p. 23, line after Eq. (1.2), ;
Added 11/26/2012

p. 24 (Erratum)
Added 2/17/2013

The phrase ”or ice giants like Neptune or Saturn” in the third complete para-
graph should be ”or ice giants like Uranus or Neptune”

1.7.2, p. 29 (Erratum)

There was a typographical error in the number quoted for the deuterium to
hydrogen ratio of the outer Sun, but beyond that the reasoning in the subsequent
part of the sentence was muddled. The sentence ”This differs ... ; ... same as
Jupiter.” should be replaced by:
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2 CHAPTER 1. THE BIG QUESTIONS

All the deuterium in the Universe was created during the Big Bang, and
the amount has been decreasing ever since, as stars destroy it in the course of
thermonuclear fusion. It is estimated that the protosolar deuterium to hydrogen
ratio is 1 in 50000. Jupiter’s atmosphere is about 10% enriched compared to
this value, but Earth’s ocean water is much more enriched, which may provide a
clue as to the nature of the planetesimals that delivered Earth’s water. It could
also be that Earth at some stage preferentially lost the lighter isotope through
escape to space.



Chapter 2

Thermodynamics in a
nutshell

Table 2.2, p. 92 (Erratum)

The critical point pressure for NH3 was stated as bars instead of being converted
to Pa as it should have been. The critical point pressure entry for NH3 should
be 112.8e5. This has also been corrected in the corresponding entry of phys.py

Addition 11/8/2012: In the caption to the table, the temperature stated for
the maximum density of pure liquid water should have been +4C instead of -4C.

p 98, first paragraph and Eq. (2.23) (Erratum);
Added 11/26/2012

The discussion of dry static energy is incorrect. The dry static energy is not
in general an exact differential for the First Law, and is only conserved for
adiabatic motions. (The problem comes about because the transformation from
p to z using the hydrostatic relation only works if ρ can be written as a function
of p alone, as is the case for adiabatic motion, i.e δQ = 0.)

The paragraph beginning ”The hydrostatic relation ...”, and the subsequent
paragraph beginning ”Note that the dry static energy ...” should be replaced
with the following modification, which now includes a discussion of enthalpy
conservation during convection:

The hydrostatic relation also allows us to derive a conserved energy-like
quantity for adiabatic motion, which can serve as a useful alternate to the
potential temperature. For adiabatic motion of an air parcel, the constancy of
potential temperature implies that ρ can be written as a function of p, given
the potential temperature of the parcel. In that case, we can define a height
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4 CHAPTER 2. THERMODYNAMICS IN A NUTSHELL

z(p) via the relation gdz/dp = −1/ρ. This transformation can actually be done
whether or not the hydrostatic approximation applies, but when the system
is hydrostatic and the motion occurs in an environment of uniform potential
temperature, z will be the actual altitude of the air parcel. This situation
would apply, for example, when an air parcel ascends or descends in a region
where convection has set the temperature profile to the dry adiabat. Using the
transformation, for adiabatic motion the First Law can be re-written

δQ = 0 = cpdT − ρ−1dp = cpdT − ρ−1 dp

dz
dz = d(cpT + gz) (2.23)

assuming cp to be constant. The quantity cpT + gz is known as the dry static
energy.

Since we had to assume adiabatic motion in order to derive the conservation
law for dry static energy, dry static energy does not provide a convenient basis for
determining what happens when heat is added to or taken away from a column
of the atmosphere. Consider a column of atmosphere which exchanges no mass
with its neighbors, and suppose an amount of heat δQ(p) is added at each level p
in the column. How does the temperature change? Once more, the hydrostatic
approximation comes into play. Since adding heat to any portion of the column
does not change the mass of that parcel of atmosphere, the hydrostatic relation
implies that the pressure at which any given parcel of atmosphere is located does
not change, though the altitude of that parcel changes as the column expands
or contracts in response to the heating. Hence, dp = 0 following any individual
parcel in the course of this process, and so,

δQ = d(cpT ) (2.23a)

assuming cp to be constant. The quantity cpT is known as the dry enthalpy. Dry
enthalpy provides a more convenient basis for atmospheric energy budgets than
entropy, since changes in dry enthalpy in an isolated column of the atmosphere
are equal to the net energy added to or removed from the column by heat sources
such as solar radiation. For example, if there are no horizontal transports and
if there is no net flux of energy between the atmosphere and the underlying
planetary surface, then the rate of change of the net dry enthalpy in a (dry)
atmospheric column is the difference between the rate at which solar energy
flows into the top of the atmosphere and the rate at which infrared radiation
leaves the top of the atmosphere; one needs to know nothing about how the
heat is deposited within the atmosphere in order to determine how the net dry
enthalpy changes. This is not the case for entropy. Since convection merely
re-arranges the heat content of a column without adding any net energy, the
net dry enthalpy of a column remains fixed in the course of (dry) convection.

Note that the dry enthalpy as defined above is actually the enthalpy per
unit mass of atmosphere. Thus, the total enthalpy in a column of atmosphere,
per unit surface area, is

∫
cpTρdz, which by the hydrostatic relation is equal

to
∫
cpTdp/g if the pressure integral is taken in the direction of increasing

pressure. More generally, the mass-weighted vertical integral of any quantity
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in a hydrostatic atmosphere is equal to the integral with respect to pressure,
divided by the acceleration of gravity.

p 108 (Erratum);
Added 6/12/2013

The two sentences beginning ”When the moist adiabatic slope is lower than ...”
and ” Conversely, ...” should be replaced by:

When the absolute value of the moist adiabatic slope is less than R/cp, then
lifting a parcel adiabatically creates enough cooling that the parcel becomes
supersaturated, and condensation occurs. Conversely, if the absolute value of
the moist adiabatic slope is greater than R/cp, condensation occurs on descent
instead.

Section 2.7.3, p 111-112 (Erratum);
Added 11/26/2012

The discussion of moist static energy needs to be corrected along the lines
discussed for dry static energy. Most of the discussion can be fixed by simply
restricting the applicability to adiabatic motions δQ = 0, but it is more useful
to expand the discussion to include moist enthalpy. The section heading should
be changed to ”Moist static energy and moist enthalpy,” and the body of the
section should be replaced by:

When the condensable substance is dilute, it is easy to define a moist en-
thalpy and moist static energy which generalize the corresponding dry quanti-
ties defined in Eq. (2.23a) and Eq. (2.23). This is accomplished by multiplying
Eq. (2.29) by T to obtain the heat budget, dropping the terms proportional to rc
(which are small in the dilute limit), and making use of RaT/pa = 1/ρa ≈ 1/ρ.
For adiabatic motion the hydrostatic relation is used to re-write the pressure
work term in precisely the same way as was done for dry static energy. Then, if
we further assume that the temperature range of interest is small enough that
L may be regarded as constant, we obtain

δQ = dh− 1

ρ
dp

0 = d(h+ gz), for δQ = 0

(2.34)

where h ≡ cpaT + Lrc is the moist enthalpy per unit mass. Note that these
relations do not assume that the condensable mixing ratio rc is saturated. For
adiabatic flow in the dilute case, the dilute moist static energy will be conserved



6 CHAPTER 2. THERMODYNAMICS IN A NUTSHELL

following an air parcel whether or not condensation occurs. In the general case,
with δQ 6= 0, we can still constrain the change in enthalpy in a column of atmo-
sphere in hydrostatic balance, which exchanges no mass with its surroundings.
Because little mass is lost during condensation in the dilute limit, the hydro-
static relation implies that dp ≈ 0 following each fluid parcel in the column, as
in the dry case. In consequence, if energy is added to or taken away from the
column, then the change in the net moist enthalpy of the column is equal to the
net amount of energy added or taken away.

When the condensate is non-dilute, things are a bit more complicated. In
this case significant amounts of mass can be lost from the atmosphere in the
course of condensation, and in essence the precipitation of condensate can take
away significant amounts of energy with it. In order to deal with the heat
storage in condensate, one must make use of the specific heat of the condensed
phase, which we will refer to as cpc` (regardless of whether the condensate is
liquid or solid); the behavior of this specific heat is inextricably linked to the
changes in latent heat with temperature through the thermodynamic relation

dL

dT
= cpc − cpc` (2.35)

which is valid when the condensate density is much greater than the vapor
density. This relation is essentially a consequence of energy conservation. In
the following we’ll neglect the temperature dependence of the specific heats
in order to simplify the algebra, though Eq. (2.35) remains valid even if the
specific heats are temperature-dependent. Eq. (2.35) will be used to allow for
the temperature-dependence of latent heat in the thermodynamic conservation
laws.

First let’s analyze the energy budget per unit mass of the non-condensable
substance. We’ll write the pressure work term in Eq. (2.28) in the alternate
form (ma/ρa)dp. On dividing the equation by ma and using Eq. (2.35) and
the hydrostatic relation to rewrite the pressure work in the adiabatic case, we
obtain

(1 + rc)δQ = dh− 1

ρa
dp− cpc`Tdrc, h ≡ (cpa + rccpc`)T + L(T )rc

0 = d[h + (1 + rc)gz]− (cpc`T + gz)drc, for δQ = 0

(2.36)

where h is the moist enthalpy per unit mass of non-condensible substance. The
quantity in square brackets in the second line is the moist static energy per unit
mass of non-condensable substance; it will be denoted by the symbol M. In
each equation, the term involving drc, represents the sink of moist enthalpy or
moist static energy due to the heat and potential energy carried away by the
condensate.

The form of moist enthalpy given above can be inconvenient to use, because
the (1+rc) weighting on the left hand side makes it hard to do the energy budget
of a column of air knowing only the net input of energy into the column. The
expression also becomes inconvenient when the atmosphere becomes dominated
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by the condensable substance, leading to very large values of rc. We can formu-
late the moist enthalpy per unit total mass of the gas by dividing Eq. (2.36) by
(1 + rc). After carrying out a few basic manipulations, we find

δQ = d

[
h

1 + rc

]
−
(
cpc`T −

h

1 + rc

)
d ln(1 + rc)−

1

ρ
dp. (2.37)

The term h/(1+rc) is the desired moist enthalpy per unit of total gaseous mass,
and the second term is the corresponding sink due to precipitation. This equa-
tion can be used to constrain the temperature changes in an isolated column of
atmosphere in response to heating, cooling or heat redistribution by convection,
much as was done in the dry case or the dilute moist case. To do this in the
non-dilute moist case, however one must confront two important complications.
First, one must explicitly take into account the loss of moist enthalpy due to
precipitation. Second, it is no longer valid to assume that dp = 0 following a
fluid parcel, even for an isolated atmospheric column, since mass loss due to
condensation above the fluid parcel reduces its pressure, and the corresponding
pressure work also needs to be taken into account in computing the change in
moist enthalpy of the column.

Exercise 2.15 Re-write the expression h/(1 + rc) in terms of the mass specific
concentration q. What is the form of this expression when q ≈ 1? What happens
to the precipitation sink term in this limit?

An alternate approach to dealing with moist enthalpy in the non-dilute case
is to write an energy budget per unit total mass (condensate included) for an
air parcel that retains its condensate. To allow for precipitation, one then deals
explicitly with the energy loss occurring when some of the retained condensate
is removed from the air parcel. This approach is especially useful in situations
when the mass of retained condensate can be appreciable. One must still ac-
count for the pressure work done when the column expands to compensate for
the reduction in hydrostatic pressure that occurs when condensate is removed.
The retained-condensate approach can be carried out using the moist entropy
expressions derived in Emanuel (1994) (see Further Reading). Further modifi-
cations to the expression for moist enthalpy are required if both ice and liquid
phases are present in the atmosphere, in order to account for the latent heat of
the solid/liquid phase transition.

The moist enthalpy budget imposes an important constraint on the evolu-
tion of temperature in an isolated atmospheric column, though application of
the constraint is straightforward only in the dilute limit. As we shall see in
Chapter 9, moist static energy and moist enthalpy also form a convenient basis
for diagnosing horizontal atmospheric energy flows, and for formulating ideal-
ized energy balance models incorporating geographic variations of temperature
and other atmospheric properties.



8 CHAPTER 2. THERMODYNAMICS IN A NUTSHELL

Prob. 2.56, p. 131
Added 2/17/2013

The phrase ”Plot and discuss results for the mixing ratio” should be ”Plot
and discuss results for the molar concentration”. There is nothing wrong with
discussing the mixing ratio instead, but MoistAdiabat.py computes the concen-
tration, not mixing ratio, and there’s no particular reason to go to the additional
step of converting this to a mixing ratio.



Chapter 3

Elementary models of
radiation balance
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10 CHAPTER 3. ELEMENTARY MODELS OF RADIATION BALANCE



Chapter 4

Radiative transfer in
temperature-stratified
atmospheres

Fig. 4.11, p. 223 (Erratum)

In the water molecule shown in the upper left hand panel of the figure , the H
and O symbols were switched in the molecular structure drawing. The corrected
figure is below:
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Section 4.4.3, p. 226
6/12/2013

Following the sentence in the last paragraph ”In addition, the lines of a molecule
in motion... molecule moving away” insert the sentence

Similarly, as seen by an observer at rest, the frequency of emitted light will
be shifted higher or lower accordingly as the molecule is moving towards or away
from the observer.
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12CHAPTER 4. RADIATIVE TRANSFER IN STRATIFIED ATMOSPHERES

Also, the following sentences should be appended at the end of the para-
graph, following the statement of the Doppler-broadened CO2 line width:

However since the Doppler-broadened width is proportional to the line cen-
ter frequency, Doppler broadening tends to become more important for high
frequency (short wavelength) lines. This can have a significant effect on the
heating of the upper portions of atmospheres by absorption of shortwave in-
coming stellar radiation.

Eq. (4.62) p. 228 and surrounding text (Erra-
tum)
See Addendum 6/12/2013

There was an error in the description of the algebraic prefactor multiplying the
exponential in the equation for temperature scaling of line strength. The short
form of the correction is to replace the text ”where n is the line-width exponent
defined above” by ”where n is -1 for linear molecules like CO2 and -1.5 for
nonlinear molecules like H2O” At the end of the paragraph, one should also
insert the caveat: ”Eq. (4.62) is reasonably accurate for temperatures under
500K, and when hνc/kT and hνc/kT0 are not small.”

However, I’ve learned a lot more about line strength since writing this para-
graph, and I now prefer the following more complete discussion of line strength,
which should replace the paragraph surrounding Eq. (4.62):

The line intensities are independent of pressure, but they do increase with
temperature. Since the emission or absorption depends on the probability with
which a transition from one state to another occurs, the line intensity depends
on the probability that the higher and lower states in the transition are occu-
pied; as always in equilibrium thermodynamics, this probability is determined
by the equipartion principle, stating that each state gets an equal share of en-
ergy. Implementation of the principle using standard methods of statistical
thermodynamics yields the following expression for line strength:

S(T ) = S(T0)
Q(T0)

Q(T )

 1− exp
(
−hνckT

)
1− exp

(
− hνc
kT0

)
 exp

(
−hν`

k

(
1

T
− 1

T0

))

where Q(T ) is a function called the total internal partition function which de-
pends on the distribution of energy states of the molecule. hν` is the energy
of the lower energy state in the transition that gives rise to the line. This en-
ergy is tabulated in standard spectroscopic databases, and is usually stated as
the frequency ν`. Determination of the lower state energy is a formidable task,
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since it means that one must assign an observed spectral line to a specific tran-
sition. When such an assignment cannot be made, one cannot determine the
temperature dependence of the strength of the corresponding line.

When the temperature is not too high, Q(T ) ∼ T for linear molecules like
CO2 and Q(T ) ∼ T 1.5 for nonlinear molecules like H2O) or CH4. At large
temperatures, Q(T ) becomes somewhat larger than the power law scaling would
predict; this happens for T > 1000K for most molecules, though the power law
breaks down around 400K for CO2. For high accuracy in hot atmospheres,
one should use the actual Q(T ) tabulated as part of spectroscope databases
like HITRAN (discussed at the end of this section), but since the temperature
scaling is dominated by the exponential term given by the final factor in the
expression for S(T ), a modest error in Q(T ) is often of little consequence. The
term in brackets in Eq. (4.62) is close to unity so long as hνc/kT and hνc/kT0

are sufficiently large, which is typically the case unless one is extrapolating to
frequencies much lower than the peak of the Planck function.

The version of PyTran.py used to make the spectral survey plots in the text
and to make the exponential sum tables did have the incorrect form of the al-
gebraic prefactor, but because the temperature scaling was used only to scale
from the 296K standard HITRAN temperature to 260K, and because the tem-
perature scaling is dominated by the exponential term, the differences in the
corrected plots are hardly visible. For computations done using the (slightly)
inaccurate exponential sum tables, the small change due to the correction in
the algebraic prefactor is completely negligible in comparison with the inaccu-
racies introduced by the approximations used to handle temperature scaling in
the band models (e.g., use of a exponential temperature factor for all bands).
Still, for research purposes, it would be best to recompute the exponential sum
tables using the updated version of PyTran.py. The script PyTran.py has been
updated to incorporate the correction in temperature scaling, currently using
the approximate power law form but in future releases with implementation of
the actual Q(T ) for selected molecules.

Addendum 6/12/2013: A bug was introduced in the course of implementing
the corrected temperature scaling. See the comments in the ComputeAbsorption
function of Pytran for details. The courseware web site has been updated with
the corrected version. I have checked the Pytran output against the indepen-
dently written Fortran code kspectrum, and for Lorentz line shapes it gives the
same results. Note that the exponential sum tables in the WorkbookDatasets
collection are still the original versions used in the text. They have not yet
been replaced with recomputed tables. The existing tables can still be used
in teaching, but for research purposes tables should be recomputed using the
newest version of Pytran (and probably also with the most current version of
the HITRAN database).
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Eq. (4.85) , p. 241 (Erratum)

The expression for Bj on the right hand side of the first line of the equation
should be multiplied by π to take into account angle averaging.

Eq. (4.91), p 260 (Erratum)

The expression 10− 8 multiplying ν3 should be 10−8.

Prob. 4.19, p. 308 (Erratum)
Added 2/17/2013

The expression 4σT 3
g in the last line should be 4σT 3

rad



Chapter 5

Scattering

Fig. 5.2 and assoc. discussion, p 321
Added 2/17/2013

The discussion of this figure could be misread as implying that the number of
scatterers in the shaded parallelogram is larger than in the unshaded rectangle
by a factor of 1/ cos θ; of course, the area (and number of scatterers) of the two
regions are identical. What the discussion is meant to imply is that the contri-
bution of these scatterers to the flux I(θ) traveling in direction θ is amplified
by 1/ cos θ. The reason is that I gives the flux through a unit area normal to
the direction of travel, and this area is smaller than the area of the top of the
parallelogram by a factor cos θ. I am working on an improved version of the
figure and discussion that makes this budget easier to understand; the path of
least resistance is to draw in the projected area normal to the beam in direction
θ, but this makes an already cluttered figure even more cluttered. Once I have
something I’m satisfied with, I’ll update this item with the revised figure and
discussion.

Eq (5.19), p. 325 (Erratum)
Added 2/17/2013

The coefficient multiplying the direct beam term on the right hand side should
be −ω0 instead of +ω0. This does not affect any subsequent calculations since
the correct form of the equation was used in computing the coefficients for the
two-stream approximations.
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16 CHAPTER 5. SCATTERING

Eq (5.21) and following text to end of paragraph,
p. 326 (Erratum+update)
Added 2/17/2013

A step was left out of the derivation of Eq. (5.21). The two terms proportional
to g̃ in this equation are exact, but the remaining term on the rhs requires
an assumption about the angular distribution of I in order to be written in
terms of I+−I−. Using the hemi-isotropic assumption the factor in parentheses
multiplying I+ − I− should be

(
2− ω0

3
2 g̃
)

instead of
(
1− ω0

3
2 g̃
)
. In addition,

the coefficient multiplying the direct beam term should be −ω0, not +ω0. This
does not affect the two-stream equations used in the rest of the chapter, since
the two-stream coefficients were calculated from the correct form of Eq. (5.21),
not the one printed in the text. I’ll also use the opportunity of this revision
to streamline the discussion and move the remarks about the hemi-isotropic
approximation out of this paragraph and into the two-stream section where it
belongs. The equation and the discussion in the remainder of the paragraph
should be replaced by:

d

dτ∗
(I+ + I−) = −

(∫
Ω+

IdΩ−
∫

Ω−
IdΩ

)
+ ω0

3

2
g̃(I+ − I−)− ω0L~

3

2
g̃ cos ζ exp (− (τ∗∞ − τ∗) / cos ζ).

(5.21)
The asymmetry terms have the same form as in Eq. (5.19) apart from the factor
3
2 . In this case, the left hand side is already written in terms of I+ +I−, without
the need for any approximation. However, to obtain a two-stream closure, the
two terms on the first line of the right hand side need to be expressed in terms
of I+ and I− by making some assumption about the angular distribution.

Paragraph following Eq. (5.29) , p 339 (Erra-
tum+update)
Added 2/17/2013

The expression for γ+ − γ− in the tenth line of this paragraph should be
−2γω0ĝ cos ζ, i.e the cos ζ factor was left out. The expressions in Eq. (5.30) are
correct and the misprint does not affect any of the calculations in this chapter
since those were done using the correct expressions in Eq. (5.30). In addition
for the hemi-isotropic case, the two-stream asymmetry factor is related to the
standard asymmetry factor by ĝ = 3

4 g̃, not 3
2 as originally stated in the text.

This relation was never used in any of the subsequent calculations. For im-
proved clarity, and for consistency with the changes made in (5.21) and the
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subsequent discussion, the portion of the paragraph after Eq. (5.29) beginning
”In consequence ...” through to the end of the paragraph should ve replaced by:

When the asymmetry function G(cos θ) can be represented as being proportional
to cos θ, it then follows that γ1 + γ2 = 2γ · (1 − ĝω0), where γ is related to
the proportionality coefficients used in approximating I+ + I− and I+ − I−
and ĝ is a coefficient characterizing the asymmetry of the scattering. Further,
comparing the direct beam terms between Eq. (5.29) and Eq. (5.15) implies
γ+ − γ− = −2γω0ĝ cos ζ. If H = cos θ, then G = g̃ cos θ exactly and so ĝ
is in fact the asymmetry factor g̃ defined by Eq. (5.17). For other forms of
H the assumed proportionality of G to cos θ is only approximately valid, but
this assumption introduces errors that are no worse than other errors that are
inevitable in reducing the full scattering equation down to two streams.The
precise form of the resulting asymmetry factor depends on the assumptions
made in approximating G, but the values tend to be reasonably close to g̃.
For example, closing the two-stream approximation by assuming the flux to be
isotropic (i.e. constant I) within the upward and downward hemispheres implies
I+ =

∫
Ω+

I cos θdΩ = 1
2

∫
Ω+

IdΩ and similarly for I−, whence γ = γ′ = 1 if we

use the form of H given by Eq. (5.20) to do the asymmetric projection. If we
further assume a phase function truncated to its first three Fourier components,
G = 3

2 g̃ cos θ, whence Eq. (5.21) implies that ĝ = 3
4 g̃.

Eq. (5.42) and nearby text , p. 345 (Erratum)

Two lines above Eq. (5.42) the expression given in the text for I+ + I− should
be I+ + I− = 2πB − (1 + 2γτ∗)I+,∞. Eq. (5.42) should be

I+,∞ = πB/ (1 + γτ∗∞) .

The expression following ”infrared by a factor” in the line following the equation
should be 1/ (1 + γτ∗∞)

Eq. 5.52, p. 349 (Erratum)
Added 6/12/2013

A factor  L~ should be inserted before the exponential in the last term of the
equation.



18 CHAPTER 5. SCATTERING



Chapter 6

The surface energy balance
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20 CHAPTER 6. THE SURFACE ENERGY BALANCE



Chapter 7

Variation of temperature
with season and latitude

p. 445 (Erratum)
Added 11/26/2012

In the final paragraph, the portion beginning with ”This is where the notion
...” up to ”...is simply µ ≡ cpps/g.” should be replaced with:

This is where the notion of moist or dry enthalpy, introduced in Chapter 2,
comes into its own. For simplicity, let’s consider a non-condensing atmosphere,
for which case the enthalpy (per unit mass) is cpT , and assume T (p) is given
by the dry adiabat throughout the atmosphere. The net column enthalpy is
then cpTsa · (1 + R/cp)

−1ps/g , where Tsa is the near-surface air temperature.
Hence, the energy required to change the surface air temperature by 1 K while
keeping the potential temperature well mixed in the vertical is simply µ ≡
cp · (1 +R/cp)

−1ps/g.

p. 446 (Erratum)
Added 11/26/2012

In the paragraph beginning ”It is convenient ...” the values of Heq should be
1.9m for Earth, .026m for the current Mars atmosphere, 167m for Venus, 8.5m
for Early Mars, and 21m for Titan.
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22CHAPTER 7. TEMPERATURE VARIATIONWITH SEASON AND LATITUDE

p. 453, Table 7.1 (Erratum)
Added 6/12/2013

The units for conductivity in the table header should be (W/(m ·K))

Prob. 7.15, p. 486 (Erratum)
Added 11/26/2012

In the first paragraph, change ”static energy” to ”enthalpy” and replace the
second paragraph by:

In the first limit, we consider the condensable substance to be dilute, as is
the case for water vapor on the present Earth. In this case we can use the dilute
moist enthalpy formula given in Section 2.7.3. Suppose that the stratosphere has
negligible heat storage, and that T (p) can be assumed to be given by the moist
adiabat for the purpose of computing thermal inertia. Suppose that the con-
densable substance is saturated at all heights. Find an expression for the energy
storage as a function of surface temperature. The thermal inertia coefficient µ
is the derivative of this with respect to surface temperature. Evaluate this at
260 K, 280 K, 300 K, and 320 K for saturated water vapor on Earth. Evaluate
it for saturated methane in an N2 atmosphere on Titan, for a suitable range of
temperatures. Express your answer in terms of an equivalent mixed-layer depth
of liquid water. How do the values compare with what you would get in the
same situations using dry enthalpy? Note that when the atmosphere is unsat-
urated, the latent heat term cannot be written as a function of temperature,
and the determination of the thermal inertia coefficient is correspondingly more
complicated.

p. 458 (Erratum)
Added 6/12/2013

The phrase ”the ratio of solar constant at apastron to that at periastron is
1+4e” should be replaced by ”the ratio of stellar constant at periastron to that
at apastron is 1 + 4e”

Prob. 7.16, p. 487 (Erratum)
Added 11/26/2012

cpps/g in the next-to-last paragraph of the problem should be (cp/(1+R/cp))ps/g



Chapter 8

Evolution of the
atmosphere

Eq. (8.9) , p. 502 (Erratum)

In the equation for the water dissociation equilibrium, the ion OH− should
be enclosed in square brackets, i.e. [OH−], to indicate that it represents a
concentration.

Eq. (8.16) , p. p 516, second line (Erratum)

Denominator should be
[
HCO−3

]
, i.e. use square brackets to denote that the

quantity is a concentration of the bicarbonate ion.
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Chapter 9

A peek at dynamics

Section 9.2, p 603
Added 11/26/2012

In deriving the atmospheric energy budget, I had been reaching for a way to
avoid introducing the momentum equations, but I over-reached and my trick
didn’t work since the moist static energy is not an exact differential for the
First Law. The correction results in a small modification of the atmospheric
energy storage form (but not the energy flux), and since the transient energy
storage was not actually used in any calculation and appears only tangentially
in the discussion, none of the results are affected. I will try to come up with a
more elegant treatment of this derivation in the Second Edition, but meanwhile,
the derivation can be repaired by replacing the paragraph following Eq. (9.6),
which begins ”To obtain the zonal mean energy equation ...”, and the rest of
the text on the page up through Eq (9.10) with the following:

To obtain the zonal mean energy equation, we apply Eq. (9.6) to the moist
static energy per unit mass, M, defined in Section 2.7.3. We will restrict at-
tention to the case in which the concentration of the condensable component
is small, so that the simplified form of the moist static energy applies and we
need not worry about the loss of moist static energy through precipitation. The
source term of the column integral of M is obtained by rewriting the First Law
following a fluid parcel. Specifically, suppose that the net vertical flux of energy
by all means other than large scale transport is F (p) at pressure level p. Then,
the energy source per unit mass per unit time is −g∂pF , with the convention
that downward fluxes are positive. The First Law then becomes

d

dt
(cpaT + Lrc)−

1

ρ
ω = −g∂pF

In order to rewrite the pressure work term as the divergence of a flux, we need
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to bring in one result from the horizontal momentum equation, which we have
not so far needed to consider. Using the momentum equation, it can be shown
that the neglect of the kinetic energy term in the energy budget is equivalent
to the statement that

(
1

a cosφ
u∂λ +

1

a
v∂φ)gz ≈ 0

This equation states that the work done by horizontal pressure gradient forces
is negligible. With this result in hand, a little manipulation making use of the
hydrostatic relation yields

−1

ρ
ω = ω∂pgz ≈ (

1

a cosφ
u∂λ +

1

a
v∂φ)gz + ω∂pgz =

d

dt
gz − ∂tgz

whence
d

dt
M = −g∂pF + ∂tgz

where M ≡ cpaT + gz + Lrc is the dilute form of the moist static energy.
At the top of the atmosphere, let F~,top(φ, t) be the net zonal mean so-

lar flux into the atmosphere (downward positive), and OLR(φ, t) be the zonal
mean outgoing thermal infrared (upward positive, as usual). At the surface, let
F~,s(φ, t) be the zonal mean solar flux exiting the bottom of the atmosphere;
the difference with F~,top(φ, t) gives the atmospheric solar absorption. The heat
flux out of the bottom of the atmosphere consists of turbulent as well as infrared
radiative terms; call this net flux simply Fs, with the convention that a positive
value indicates a transfer of heat from the atmosphere to the underlying surface.
With these definitions the vertically integrated source term, which gives the rate
of change of moist static energy in a column, becomes〈∫ ps

0

SB
dp

g

〉
= F~,top −OLR− F~,s − Fs.+ ∂t

〈∫ ps

0

gz
dp

g

〉
(9.7)

The form of the final term assumes that z = 0 at the bottom boundary, i.e. a
flat surface; otherwise the exchange of ∂t and the vertical integral would require
the addition of a boundary term involving the mountain height. Substituting
the source term into Eq. (9.6), and using the moist static energy in place of B,
we obtain the energy balance equation

∂tEatm +
1

cosφ
∂φΦatm cosφ = F~,top −OLR− F~,s − Fs (9.8)

where we have defined the atmospheric energy flux as

Φatm ≡
1

a

〈∫ ps

0

vM
dp

g

〉
(9.9)

and the mean heat storage in the atmospheric column as

Eatm ≡
〈∫ ps

0

h
dp

g

〉
. (9.10)
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where h is the dilute moist enthalpy per unit mass, cpaT + Lrc. Note that
the final term in Eq. (9.7) has canceled out the contribution of gz in the time
derivative of moist static energy, with the result that the atmospheric heat
storage is the vertically integrated moist enthalpy rather than the vertically
integrated moist static energy. Nonetheless, it is the convergence of the flux of
moist staic energy that causes the enthalpy in a column to change.

Problem 9.16, p 633
Added 11/26/2012

Replace the phrase ”mean moist static energy Eatm defined in Eq. (9.10)” with
”column-integrated dilute moist static energy M”, and replace subsequent ref-
erences to Eatm with M .


