
1 Part 1: CS 28501 (Topics in Scientific Com-
puting)

1.1 Part 1a: Introduction to Dynamical Systems, Numer-
ical Methods and Programming

The emphasis in Part 1a is on defining basic concepts and presenting examples
that help provide a foundation for understanding the more general development
given in Part 2.

1.1.1 Lecture 1: Discrete dynamical systems I

What is a dynamical system. How do they arise in problems in physical science,
biology, chemistry, and economics.

Derivation of the discrete logistic equation as a population growth problem

xn+1 = xn + gxn(1− xn

C
) (1)

C is the carrying capacity. The population stops growing, and begins dying
off, if the carrying capacity is exceeded. The equation can be reduced to the
following standard form

xn+1 = axn(1− xn) (2)

This is an instance of a general class of dynamical systems, consisting of iterated
maps on R. The general problem is xn+1 = f(xn, λ) where λ is a parameter or
vector of parameters.

We now define some basic concepts.
A fixed point is a point such that f(x) = x
Stability of fixed points. Definition of stability. Definition of asymptotic

stability. Not all stable systems are asymptotically stable. Example: f(x) = −x.
Linearization about a fixed point. Stability criterion. The amplifying factor

γ (x′n+1 = γx′n). Growth rate κ = ln γ (x′n = x′0 exp(κn))
Nonlinear stability. Global asymptotic stability. Linear asymptotic stability

guarantees nonlinear stability, but linear neutral stability does not. Example:
f(x) = −x± x3

Proof of nonlinear stability: Suppose that x0 is a fixed point, |f ′(x0)| < 1,
and f ′ is continuous in an open neighborhood of x0. Then, the mean value
theorem implies that |f(x1) − f(x0)| = |f ′(xm)||x1 − x0| for some xm in the
interval. Continuity of f ′ implies that we can make |f ′(x)| < |f ′(xm)| + ε < 1
by making the interval small enough. Let M = |f ′(xm)| + ε. Then we have
|f(x1) − x0| = |f(x1) − f(x0)| < M |x1 − x0|, which proves the assertion, since
the nth iterate of any x in the interval will satisfy |xn − x0| < Mn|x1 − x0|,
which can be made arbitrarily small.
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Point out that the above is an example of a Lipschitz condition. A function
need not be continously differentiable to have a Lipschitz property.

Now we return to the specific case of the discrete logistic map.
Show sketch of the map. Graphical iteration.
Proposition 1: If a ≤ 4., the map maps the unit interval into itself.
Proposition 2: If a < 2 the map takes the unit interval into [0, b]. with

b < .5. The map is expanding near the origin, though (|f ′| > 1). The origin
is a repellor. (or ”source”). (We’ll see soon that the map is contracting in a
suitably defined subinterval).

Proposition 3: If a < 1 the map is contracting everywhere, |f ′| < 1. It
is a contraction map, and everything is attracted to the origin regardless of its
initial position in the unit interval. (This is an example of a type of fixed point
theorem.

Definition: Invariant set. Fixed points are an invariant set. In fact, any
orbit forms an invariant set. Proposition: For 2 < a ≤ 4, the interval [0, a/4.] is
an invariant set. However, there are smaller invariant sets. Once orbits leave the
vicinity of the origin, they have no way of getting back. We will return to this
point later when we discuss limit sets and attractors. The left hand boundary
is f(a/4) as can be verified by graphical integration. This does approach zero
as a → 4.

The fixed points of the logistic map, and their stability. Dependence of
results on a:

• Fixed point at x = 0. Stable if a < 1, otherwise unstable.

• Fixed point at x = 1− 1/a if a > 1

• For the second fixed point, γ = 2 − a, so it is stable without oscillations
for 1 < a < 2, and stable with oscillations for 2 < a < 3. It is unstable for
a > 3.

Bifurcation diagram. The bifurcation criterion: bifurcations occur only
where f ′(x, a) = 1.

Illustrate repulsion from unstable fixed point, attraction to stable fixed point,
and transition from non-oscillatory to oscillatory behavior by numerical simu-
lation.

1.1.2 Lecture 2: Discrete dynamical systems II

Definition of periodic orbit. Bifurcation from an unstable fixed point to a peri-
odic orbit. Periodic orbits are fixed points of n-times composition of f . Show
plots illustrating this point, and bifurcation from unstable fixed point in the
logistic map.

Linear stability of periodic orbits.
Definition of α and ω limit sets. Definition of an attractor, and basin of

attraction.
Bifurcation of periodic orbits as they cross stability threshold. Application

of bifurcation criterion to n-times composition. Period doubling bifurcations.

2



(Note on using mapExplorer to compute stability of periodic orbits: The growth
rate is very sensitive to the initial position. All the growth rates for members
of a cycle should be identical, but at low resolution (e.g. 1000 points in the
interval), the error in the orbit position throws this off. At 10000 points, it’s
much better. At some point, I’ll add a bisection refinement step to the periodic
orbit finder, to improve this).

The numerically generated orbit bifurcation diagram for the logistic map.
Chaotic behavior. Goes chaotic at around a = 3.6. Some properties of chaos:

• Sensitive dependence on initial conditions. Lyapunov exponents as a mea-
sure of sensitivity. Alternate definition of sensitivity (HSD p. 341). Illus-
trate both with numerical simulation

• Unstable periodic orbits are dense. Illustrate.

• Transitivity.

Other 1D maps (Tent map. Bernoulli map.). We will define these maps, but
leave exploration of behavior to problem set.

Definition: Conjugacy of chaotic systems. Maps f and g are conjugate on
an interval if there is a bijective continuous map h such that h ◦ f = g ◦h. Note
that h need not be a diffeomorphism.

Proposition: Conjugacy preserves periodic orbits. Therefore if one map in
a conjugate pair has a dense set of periodic orbits, the other map does as well.

Proposition: Conjugacy preserves sensitive dependence to initial condi-
tions. (HSD p 341). Define ”sensitivity” constant, and distinguish from Lya-
punov exponent. Conjugacy does not preserve stability properties of fixed points
and periodic orbits.

Number theory meets dynamical systems: the 3n + 1 conjecture.
This is a nonlinear map on Z+, defined by the following procedure. Take an
integer n. Form a new integer 3n+1. If the result is even, divide by 2 repeatedly
until you are left with an odd integer. The conjecture: No matter what initial
n you take this procedure inevitably terminates at 1 after a finite number of
iterations. Powers of 2 are ”drains,” or strongly contracting points. Proposition:
Rate of growth is bounded by 2(3/2)M − 2. (results from the fact that 3n+1 is
even if n is odd, so we divide by 2 at least once, yielding (3/2)n + 1/2. Result
follows by iteration, and using formula for geometric series. Note that we can
construct short cycles for arbitrarily large numbers. suppose 3j + 1 = 2m. This
can be satisfied with integer j when 2m ≡ 1(mod3), i.e. when m is even. Then
j = (22n − 1)/3 gives a cycle of length 2. Can we construct arbitrarily long
cycles?

Optional: A brief discussion of maps on the plane. The sin-sin map. Special
consequences of being area preserving.

1.1.3 Lectures 3 and 4: Python

Analysis of 1D dynamical systems will be used throughout these lectures to
illustrate the use of Python in exploratory numerical work.
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Logging on to the server. How to get an xterm. ssh -X -l<username>
seine.local or ssh -X -l<username> 192.168.0.9) or (from outside the
Paris center ) ssh -X -l<username> 81.255.59.189.

Basics of programming in Python: Variables, lists,modules,functions, loops,
conditionals. Uses of list comprehension and list methods. Using the Python
development environment to write and edit programs.

Objects and object-oriented programming;Basic use of objects; simple ex-
amples. Use of the mapExplorer object.

Anatomy of the mapExplorer object, used in exploring the logistic map.
The Numeric array module. Example: Use of array arithmetic to compute

the growth of the log of the distance between two orbits, and test convergence
of the Lyapunov exponent. For a reprise of what was done in class, look at the
module lyapPlot.

Overloading operators (use Z[
√

(5)] as example). The the examples in the
module ObjectExamples.

Use of the simple plotting package;Writing out your results to a file. See
Python notes, and also look at examples of how plotting is done in the mapEx-
plorer class and in the function ezplot contained in the map1D module. Saving
a plot as postscript. Converting to pdf (pstopdf on OSX, but ps2pdf may also
be available).

1.1.4 Lecture 5 and 6: Introduction to ODEs

Definition of an ordinary differential equation;Differential equations defined in
terms of a map on function spaces; Linear vs. nonlinear maps, and why linear
is easier (superposition); One should think of solution of O.D.E. as a matter of
substituting in a function and see if it maps to zero, not primarily in terms of
”sniffing out” the solution from a starting point.

Example of non-uniqueness: dy/dx = y2/3. dy/dx = y/x.
ODE’s have families of solutions, and auxiliary (e.g. initial) conditions must

be specified to pick out which one we want. Examples of solution families
(see BR Chapter 1). Specify a family of functions, and find what ODE it
satisfies. y =

√
(C + x). Generalization to normal-curve families y = f(x, c), f

continuously differentiable with respect to both arguments, which can be solved
for c(x, y) having ∂yc 6= 0.

For dy/dx = f(x) or dy/dx = f(y) the problem reduces to quadrature
(integration).

Solution methods for first order equation initial value problems. Separation
of variables. Integrating factors. General solution to the first order linear ODE.

Scientific examples:

• Radiative cooling of an object. dT
dt = −aT 4

• Logistic equation (example of growth and saturation). dC
dt = (1 − C)C.

This also provides an example of solution by partial fractions.
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• Finite time blowup. Condorcet’s equation. dC
dt = (1 + C)C. Condorcet’s

philosophy (the anti-Malthus), and his sad fate.

• Ocean mixed layer, Newtonian cooling, forced by oscillating heat source.
Use of complex exponentials in solution.

Lipschitz conditions.
Lemma on exponential bound of solution to D.E.
Separation theorem, and proof of uniqueness (Existence proof in Part 2)
Comparison theorem.

1.1.5 Lectures 7 and 8: Linear ODEs

This is the section in which we develop the notion that linear ODE’s are basically
an extension of finite dimensional linear algebra.

General discussion of linear, second-order differential equations with noncon-
stant coefficients: Linear operators, d/dx is not a continuous operator, linear
independence, bases, Wronskian, uniqueness (i.e. is there anything nontrivial in
the kernel?); the variation-of-constants method for the inhomogeneous problem
and the influence (or Green’s) function; Introduction to idea of ”weak solution”,
and theory of distributions; the system formulation; Poincaré phase plane.

Oscillation theorems.
Examples. The Harmonic oscillator. Phase portrait for the harmonic oscilla-

tor. Green’s function for the damped harmonic oscillator initial value problem.
Derivation of the Green’s function
We wish to solve

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = r(x) (3)

with r(x) = 0 for some x < xa and subject to the initial condition y(x) =
y′(x) = 0atx = xa. (Note: The condition on r can be relaxed somewhat, and
the problem can be generalized to cases where r vanishes sufficiently rapidly
at −∞.) We solve the problem by constructing the Green’s function G(x, x1),
which satisfies the equation

d2

dx2
G(x, x1) + p(x)

d

dx
G(x, x1) + q(x)G(x, x1) = δ(x− x1) (4)

where the symbol δ represents an entity with the property that δ(ζ) = 0 for
ζ 6= 0 and ∫ ∞

−∞
δ(ζ)dζ = 1 (5)

Of course, there is no such function with this property, but as discussed in class
it is possible to make sense of this symbol as a ”weak limit” of a sequence of
ever-sharper functions, or as a linear map from a suitably defined function space
to the reals. It is an example of what is called a distribution. A consequence
of the definition of δ is that its integral is unity over any interval containing
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the origin, however small. Similarly, the integral of f(ζ)δ(ζ) over any interval
containing the origin is f(0).

If we multiply Eqn. 4 by r(x1), integrate with respect to x1, and make use
of linearity (on the left hand side) and the definition of δ(ζ) on the right hand
side, we find immediately (well, almost) that the following is a solution to the
homogeneous problem which satisfies the desired initial conditions:

y(x) =
∫ ∞

x1=−∞
G(x, x1)r(x1)dx1 (6)

Note that if you think of G as a sort of a matrix, but with real-valued rather
than integer indices, this integral expresses a form of ”matrix multiplication”
extended to infinite, indeed continuous, dimensions. The Green’s function is in
fact the ”matrix” expressing the inverse of the operator L = d2/dx2+pd/dx+q.

Now we show how to construct G in terms of a solution basis of the ho-
mogeneous problem. First, we prove a few lemmas concerning the continuity
properties of G at x1. Using integration by parts, we find that for any function
F (x), the following relations hold in the limit ε → 0, provided |F | is bounded
above near x1: ∫ x1+ε

x1−ε

F (x)dx = 0 (7)

∫ x1+ε

x1−ε

(x− x1)F (x)dx = 0 (8)

∫ x1+ε

x1−ε

dF

dx
dx = F (x1 + ε)− F (x1 − ε) (9)

∫ x1+ε

x1−ε

(x− x1)
dF

dx
dx = 0 (10)

∫ x1+ε

x1−ε

(x− x1)
d2F

dx2
dx = −(F (x1 + ε)− F (x1 − ε)) (11)

So, we first multipy Eqn. 4 by (x − x1) and integrate over a small interval,
which, using the lemmas, tells us that G(x, x1) is continuous at x = x1, i.e.
G(x1 + ε, x1) = 0. Then, we integrate Eqn. 4 over the small interval, but this
time without first multiplying by x − x1. Using our previous continuity result
and the definition of the δ-function, we then find the jump condition:

G′(x1 + ε, x1)−G′(x1 − ε, x1) = 1 (12)

where G′(x1 + ε, x1) is shorthand for the derivative of G with respect to its first
argument, evaluated at x = x1 + ε. Because G is identically zero for x < x1,
the second term on the left hand side vanishes for the initial value problem we
are considering.

Now we can construct G given two independent solution of the homoge-
neous problem, which we will call y1(x) and y2(x). The solution G = a ·
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(y1(x)y2(x1) − y2(x)y1(x1)) is a solution of the homogeneous problem, by su-
perposition. It also satisfies the continuity equation that G(x + ε, x1) = 0 as ε
approaches zero. Because the two solutions are linearly independant, we know
that G is not identically zero. We are almost done now, since we only need to
choose a so as to satisfy the jump condition on G′. This condition requires that
a = 1/(y′1(x1)y2(x1) − y′2(x1)y1(x1)). The astute student will notice that a is
just the reciprocal of the Wronskian of the two solutions, which is guaranteed
to be nonzero whatever the value of x1 (since the two solutions are linearly
independant. To summarize, the Green’s function is

G(x, x1) =
1

W [y2, y1](x1)
(y1(x)y2(x1)− y2(x)y1(x1)) (13)

Example: Let’s find the Green’s function that solves the problem

d2y

dx2
+ y = r(x) (14)

The functions y1 = sin(x), y2 = cos(x) form a solution basis. Their Wronskian
is constant, and has the value W = 1 (There is a general class of problems for
which the Wronskian will be constant. What is it?). Thus the Green’s function
is

G(x, x1) = sin(x)cos(x1)− sin(x1)cos(x) = sin(x− x1) (15)

Note that in this case, the Green’s function turns out to be a function of x −
x1,i.e. G = G(x−x1). This is a (generalizable) consequence of the fact that we
started with a constant-coefficient system.

1.1.6 Lecture 9: Equations with constant coefficients

Preliminary: Uniqueness for nth order linear equation with non-constant coef-
ficients.

Linear differential equations with constant coefficients; the characteristic
polynomial; Operator polynomials, factoring the characteristic polynomial, and
use of commutativity of factors; multiple roots;

Lemma (d/dx− a)n(xmexp(ax)) = 0 for 0 ≤ m < n.
Optional: The method of undetermined coefficients for the inhomogeneous

problem. Green’s functions and transfer functions.

1.1.7 Lecture 10: Systems of equations

The reformulation of linear equations with constant coefficients as linear sys-
tems; system formulation of the general initial-value problem; Solution bases
and the ”resolvent” for general systems; Reduction of constant-coefficient case
to matrix eigenvalue problem; A few remarks on repeated roots and Jordan
canonical forms.

Autonomous, nonlinear systems and the stability of their equilibrium points;
Possibility of algebraic instability in the case of repeated neutral eigenvalues.

7



”Autonomization” (turn N-d non-autonomous into (N+1)-d autonomous).
Foucault’s Pendulum

For small amplitude oscillations, the motion of the Foucault pendulum is
described by the equations

d2x

dt2
= −x + f

dy

dt
,
d2y

dt2
= −y − f

dx

dt
(16)

If f = 0 this consists of two independent harmonic oscillators. The general
solution can be built as a sum of solutions of the form[

x
y

]
=

[
A
B

]
e−iωt (17)

Substituting into the differential equation yields the system[
1− ω2 iωf
−iωf 1− ω2

] [
A
B

]
= 0 (18)

Taking the determinant and doing a little re-shuffling of terms yields the char-
acteristic equation in the form:

(ω2 − 1)2 − (ω2 − 1)f2 − f2 = 0 (19)

whence

ω2 − 1 =
f2 ±

√
f4 + 4f2

2
(20)

The solutions are ±ω+ and ±ω−, where ω+ and ω− are the two positive solutions
of Eq. 20 obtained by taking the + or - sign on the right hand side, respectively.
It can be shown that the ”-” branch of the right hand side is never below -1,
and asymptotes to -1 as f → ∞. For the ”-” branch, the right hand side is
always positive. Hence, ω is always real. It is easily seen that, ω− is 1− f/2 at
small f , and asymptotes to 0 at large f . Further ω+ is 1 + f/2 at small f and
asymptotes to f at large f . We find the corresponding A and B from Eq. 18,
which can be satisfied by [

A
B

]
=

[
iωf

ω2 − 1

]
(21)

The solution for the eigenvector is undetermined up to multiplication by a con-
stant. We denote the solution corresponding to ω+ by A+ and B+, and so forth.
Since the eigenvalues come in plus-minus pairs, solutions can be superposed to
yield a real solution; this is guaranteed by the fact that the original equation
had purely real coefficients. The general real solution is then[

x
y

]
= Re(a

[
A+

B+

]
e−iω+t + b

[
A−
B−

]
e−iω−t) (22)

The constants a and b are determined by the initial conditions. Now:

• Discuss pure periodic solutions (b=0 or a=0). Ellipses
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• Superpose to get solutions with x = y = 0 at t = 0. a = B−, b = −B+.[
A±
B±

]
= f

[
i
±1

]
(23)

Now we:

• Factor out sum and difference frequencies

• Write solution as a product of a rapidly oscillating part and a slowly
rotating vector

• Voila!

The lecture will finish with a few plots of the orbits in the xy plane, for
various values of f.

We hope to organize an informal field trip to Musée des Arts et Metiers to
see Foucault’s original pendulum.

1.1.8 Lectures 11 and 12: Numerical solutions

Introduction to concept of numerical approximation; reduction from infinite di-
mensional operator to finite dimensional operator; ”Consistency” (convergence;
accuracy of approximation; Approximation of first and second derivatives by
finite difference (second order). Taylor polynomials for functions that don’t
have a convergent Taylor series, or even infinitely many derivatives. Methods
for numerical solution of ODE. Use of Autonomization. Euler method. Mid-
point method (RK2); derivation of fourth-order Runge-Kutta; implementation
of Runge-Kutta in Python; error estimates; (Adaptive step-size implementation
deferred). Examples of performance; What happens if the rhs is has fewer than
four derivatives?

Approach to RK derivation: Derive coefficients for one-step (Euler) and
two-step (midpoint) methods. Then turn to 4th order case, which is done by
the same idea, but with more algebra. A lot more algebra. To spare students
the pain, we will only summarize the algebra enough to make it clear that the
general attack on the second order case carries over to fourth order. It is a little
miracle.

Numerical stability. Illustration for Euler method applied to exponentially
damped 1D system.
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