
Autumn Quarter 2005
Math. Methods Problem Set 5

November 29, 2005

1 1D Linear Inhomogeneous and Homogeneous

equations

Consider a population which grows during the day but dies out at night.
There is also a migration of new individuals into the region at a constant
rate. The equation governing this system is

dP

dt
= (go sin t)P + a (1)

where go and a are constants.
(a) Find the homogeneous solution of this equation. Discuss its behavior.
Solution:

1

P

dP

dt
= (go sin t) (2)

so
ln P = go cos t + const.; P = Ae−go cos t (3)

The solution is periodic. It grows to a maximum at t = π, decays back to its
original value at t = 2π, and repeats the pattern.

(b) Write down an expression for a particular solution of this equation,
satisfying P (0) = 0, in terms of a definite integral over t. You probably will
not be able to carry out the integral analytically.

Solution: Write P = A(t)Ph(t) where Ph is a solution of the homogeneous
equation. Then, substituting in the original equation

dA

dt
= a/Ph(t) = aego cos t (4)
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so

A(t) = a

∫ t

0

ego cos t′dt′ (5)

and

P (t) = a

∫ t

0

ego(cos t′−cos tdt′ (6)

Note that the integrand is positive, and periodic in t′ with period 2π. There-
fore, the P (t + 2π) = P (t) + P (2π), and hence the population grows linearly
with time, with a oscillations superposed.

(c) Use the Trapezoidal Rule with Romberg extrapolation to evaluate
the integral of Part (b) at t = 0, 2π, 4π, ..., 20π numerically. Is the long term
population trend growth or decay? How rapid is the growth or decay? (e.g.
linear vs. exponential). Try to infer this behavior directly from the integral
in Part (b)

Solution From the discussion of the previous part, we only need to eval-
uate P (t) in the interval [0, 2π]. This is done in the accompanying Python
script. Note that we are free to take units such that a = 1 and go = 1, since
the former just multiplies the solution by a constant and the latter can be
absorbed in the definition of time.

2 Second order linear, homogeneous equations

with const. coefficients

Consider the equation
d2x

dt2
+

dx

dt
+ x = 0 (7)

(a) Write down the characteristic polynomial, and find the two funda-
mental solutions.

Solution: λ2 +λ+1 = 0, i.e. λ = 1
2
(−1±

√
3i) The fundamental solutions

can be written as exponentials:

e−t/2e±i
√

3t/2 (8)

or, by adding and subtracting the two complex exponentials, as

e−t/2 sin(
√

3t/2), e−t/2 cos(
√

3t/2) (9)
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(b) Find the superposition of the two solutions that satisfies the initial
condition x = 1, dx

dt
= 1 at t = 0.

Solution: Let’s work with the real form of the two fundamental solutions.
The solution proportional to sin vanishes at t = 0 so we write immediately

x(t) = e−t/2(cos(
√

3t/2) + A sin(
√

3t/2)) (10)

Then taking the time derivative and setting it equal to unity at t = 0 we find
−1

2
+
√

3/2A = 1, i.e. A =
√

3. The velocity is

e−t/2((−1

2
+ A

√
3/2) cos(

√
3t/2) + (−1

2
−
√

3/2) sin(
√

3t/2) (11)

As an exercise, you can try doing this using the complex exponentials
instead, to see which way you find easier.

(c) Write a Python script to plot this orbit in the (x, dx
dt

) plane. Solution:
See accompanying Python script.

(d) Do the same for the equation

d2x

dt2
+ 2

dx

dt
+ x = 0 (12)

subject to the same initial conditions.
Solution: The characteristic polynomial is λ2 + 2λ + 1 = 0, which has a

double root at λ = −1. The two fundamental solutions are then

et, te−t (13)

To satisfy the initial condition on x we write x(t) = (1+At)e−t. Then, taking
the derivative we find A = 2. The velocity is v = (A− 1− At)e−t. We plot
in the accompanying Python script as before.

3 Linearization in 2D

Consider a population of rabbits (denoted by r) and wolves (denoted by w).
You can think of r as the mass of rabbits per square kilometer, and w as
the mass of wolves per square kilometer. The rabbits live off of grass, and
in the absence of wolves their population would be limited to a carrying
capacity C, limited by the grass supply. The wolves live only off of rabbits
(poor bunnies!). In the absence of rabbits, the wolf population would die off
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at a rate d. With rabbits as food (poor bunnies! lucky wolves!) the wolf
population grows exponentially with a growth rate proportional to the bunny
population. This system is described by the equations

dr

dt
= gr · (1−

r

C
)r − e · r · w;

dw

dt
= gw · r · w − d · w (14)

In this equation, e is the eating rate, which will not generally be the same as
the growth rate of wolf biomass, since rabbit mass is not converted completely
into wolf mass; there is some wastage. To be physically consistent, though,
the ”conversion efficiency” gw/e ought to be less than unity. These equa-
tions are a slight generalization of the Lotka-Volterra Predator-Prey Equa-
tions. The generalization consists in adding a carrying capacity for the prey
population.

Find all the equilibrium points of this system. Linearize the system about
each of the equilibrium points, and write down the matrices determining the
stability of the equilibrium points. Which are stable and which are unstable?

Solution: The linearized system is

d

dt

[
δr
δw

]
=

[
gr · (1− 2 ro

C
)− ewo −ero

gwwo gwro − d

] [
δr
δw

]
(15)

where (ro, wo) is an equilibrium point. The three equilibria are: ro = wo = 0
(no rabbits or wolves ro = C, wo = 0 (rabbits at maximum capacity, but no
wolves to eat them (lucky bunnies!), and ro = d/gw, wo = (gr/e) · (1 − ro

C
)

(rabbits and wolves in not-so-peaceful coexistence).
By plugging into the matrix and finding the eigenvalues, we find that the

first of these three solutions has the matrix[
gr 0
0 0

]
(16)

and so is unstable (a small introduced rabbit population grows exponentially
at rate gr). The second solution has the matrix[

−gr −eC
0 gwC − d

]
(17)

which has one stable eigenvalue (λ = −gr) and a one eigenvalue which is
unstable if gwC−d > 0. If this eigenvalue is unstable, there is sufficient rabbit
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population to support a growing wolf population. The third equilibrium has
the matrix [

−gr
ro

C
−ero

gwwo 0

]
(18)

The eigenvalues are given by

λ(λ + gr
ro

C
) + egwrowo = 0 (19)

from which the stability can be easily determined. Note that we can reduce
the parameter space because we are free to adopt units of time such that
gr = 1 and units of mass such that C = 1. Then, the free parameters are
gw, e and d. The characteristic polynomial can then be written

λ(λ + ro) + gwro(1− ro) = 0 (20)

The solutions are

2λ = −ro ±
√

(1 + 4gw)r2
o − gwro (21)

Note that the eating rate e doesn’t affect the stability. When ro is large, the
+ branch yields a growing solution, so the equilibrium is unstable. When ro is
small, the equilibrium is stable,but the eigenvalues form a complex conjugate
pair, and a perturbation spirals back toward the equilibrium point.
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