Autumn Quarter 2005

Math. Methods Problem Set 4: ODE’s in 1

1

dimension

October 30, 2005

Approach to radiative equilibrium

The temperature of a planet heated by constant Solar radiation .S, and sub-
ject to cooling by infrared radiation to space, is governed by

dT
M—- = S —oT* (1)

where M is a constant ”thermal inertia” factor and o is the Stefan-Boltzmann
constant. Answer the following:

Find the equilibrium point(s) (steady states) of the system
Determine the stability of the equilibria

Find an approximate form of the solution if 7" is initially much smaller
than the equilibrium temperature (but still positive), valid during the
time over which the temperature remains small.

Find an approximate form of the solution if 7" is initially much larger
than the equilibrium temperature, valid during the time before which
the temperature gets too close to the equilibrium

Using a few qualitative sketches, explain what you think the general
behavior of the system is like.

Extra Credit: Using partial fractions, find an exact general solution to
this system, and discuss its behavior. Here’s a hint that should help get you
started: You can write

1 Al AQ AB A4

1 - +
z¢—1 z—e z—ey ZzZ—e€3 Z—ey

(2)

where the e; are the four fourth roots of unity and the A; are constants.
The trick to solving this problem without a ridiculous amount of algebra is
to multipy both sides by z*—1 (which is equal to (z—e;)(2—e2)(2—e3)(2—e4))
and then determine the unknown coefficients by noting that the relation must
be true whatever value of z you plug in. By being clever about what you plug
in, you can get the coefficients with relatively little pain. (Hint: try plugging
in z = ey, and so forth). In the end, you won’t get an expression allowing
you to write down T'(¢), but you will get an expression allowing you to write
down ¢(7"), which you can then plot and turn sideways.

2 Condorcet’s equation

Discuss the behavior of the solutions to the equation

dP

o = 9P+ P) 3)

assuming that P is initially positive. What is the approximate form of the
solution when P <« 1?7 How does the system behave when g, > 0?7 When
go < 07

3 Logistic equation with time-varying growth
rate

Find the solution to the equation

e = 6()P(- P) 8

where g,(t) = g1 - (1 + sinwt)

4 Programming Project: A polynomial ob-
ject

In this exercise, you will develop a class for manipulating polynomials. Let
the polynomial P be defined by

P(z) = ap + a1z + asx® + ... + apa” (5)

The polynomial can be defined by a list of coefficients, [ag, a1, ..., a,]. Start
by defining a class called poly, whose creator (the __init__ method) takes
the list of coefficients and stores it in a member called coeffs. Next, we
add a few useful methods to the class. First, add a __repr__ method which
prints out a polynomial object in a nice way when you type its name. For ex-
ample, if myPoly = poly([1.,2.,3.]), then typing myPoly should produce
the output 1. + 2.x + 3.x**2.

Next, add a __call__ method which returns the value of the polynomial at
a given x. The straightforward way of computing the value by summing the
values a;2’ is very inefficient and also lets a lot of roundoff error accumulate.
The right way to evaluate a polynomial on a computer is to rewrite the
computation as follows:

P(z) =ao+zx* (a1 +a*(ag+...)...) (6)

For example, we'd write a + bz + cz* as a + x(b + cz). The way this would
look as an algorithm is that we would first evaluate b+ cx, then multiply by
x then add a. Generalize this procedure, and code it up as a function. Make
this function into a method of your polynomial object.

Finally, add an __add__ method which allows you to add two polynomial
objects. It should return a polynomial object whose coefficients are the sums
of the coefficients of the two operands.

Extra Credit: Develop a _mul__ method which allows you to multipy
two polynomial objects, returning a polynomial object whose coefficients are
the coefficients of the product. For example, multiplying poly([a,b]) by
poly([c,d]) should return poly([ac,bc+ad,bd]). Defining object multi-
plication in this way is so powerful that,if you have done everything right,
you should be able to use the __call__method you wrote previously, without
modifications, to find the coefficients of the composition of two polynomials.
In other words, myPoly(.1) should return the value of myPoly at x = .1, but

myPoly(poly[1.,2.]) should return the polynomial whose coefficients are
given by substituting 1 + 2z into the polynomial defined by myPoly.

Verify that your object is behaving properly, by checking it against some
cases where you know what the answer should be. (This request applies to
all parts of the problem, not just the extra credit. Doing this sort of check
should be such a reflex that I won’t always explicitly state it in the future).

