
Autumn Quarter 2005
Math. Methods Problem Set 3: Newton’s

Method and Numerical Integration

November 9, 2005

1 Newton’s method

Use Newton’s method to find the first 5 positive solutions of sin x = 10e−x.
Solution: See Python script. The answers are 6.30152,9.42397,12.56641,15.70796

and 18.84956

2 Newton’s method as a dynamical system

Consider the iterated-map dynamical system defined by applying Newton’s
method to an attempt to find the roots of x2 + 1 = 0, with real x. Are
there fixed points? Are there periodic orbits? Are these stable? What is the
attractor basin of the stable solutions, if any? Are there any chaotic orbits?

Solution:
You could spend a lifetime, or at least a PhD thesis, exploring the be-

havior of this innocuous map. I will only sketch out a little of its basic
behavior.

The Newton’s method iteration for this problem is

xn+1 = xn −
x2 + 1

2x
=

1

2
xn −

1

2xn

(1)

Thus, the iterated map is

g(x) =
1

2
x− 1

2x
(2)

1

This has no fixed points for real x, because the original function has no zeros
on the real axis.

We note a few important properties of this function:

• g(−x) = −g(x)

• When |x| is large, g(x) ≈ 1
2
x

• g(x) < 0 for 0 < x < 1, and g(x) > 0 for x > 1.

• g(x) → −∞ when x approaches zero from the positive side, and g(x) →
+∞ when x approaches zero from the negative side.

the first property means that we only need to look at the behavior of the
function and its compositions for positive values, since the behavior for neg-
ative x can be inferred from its behavior at positive x. g(g(x)) is an even
function, g(g(g(x))) is an odd function, and so forth. The second property
means that if |x| is initially large, or if an orbit takes |x| to a large value
at any point, then the orbit will relax exponentially to smaller values like
|x|/2n, until the large |x| form of g is no longer valid. The third property
means that values in the interval [0, 1] map to negative values on the next
iterate, whereas values x > 1 stay positive at the next iterate. Since large
values always decay eventually to smaller values (from the second property),
the orbits will not be confined to the positive x axis, but instead will switch
sides from time to time. Values x < −1 stay negative until they fall into the
interval [−1, 0], at which point they flip to the positive side.

The last of the listed properties is a real headache, since the occurrence
of singularities complicates the problem of finding periodic orbits on the
computer. It is also, however, the central feature that organizes the behavior
of the orbits of this system. The function has a discontinuity at x = 0
so searching for fixed points by looking for sign changes in g(x) − x will
give spurious results near this point. A similar remark applies to looking
for periodic orbits, which we do by looking for fixed points of compositions
of g with itself; points where the compositions become infinite also lead to
spurious fixed points if we look for changes in sign. At what points do the
higher compositions become singular? To determine this, we look at the
points which map to zero after n iterates, since the next iterate will then be
infinite. These points are the pre-images of zero. For example the point x = 1
maps to x = 0 after the first iterate, and so x = 1 will also yield infinite values

2

at the second iterate (which would show up on the composition-2 map). We
calculate the pre-images by inverting the map in Eq. 2 to solve for x(g).
This is done by solving x2 − 2gx− 1 = 0. The solution is

x = g ±
√

g2 + 1 (3)

This is not single valued. The number of pre-images doubles for each it-
erate, if there are no repeats. See Python script for calculations. Note
that the list of singular points of the (n + 1)st composition includes all the
singular points of the nth composition as well. For example, if g(g(x1)) is
infinite then g(g(g(x1))) is also infinite. Here are some results for the addi-
tional singular points that are added for the first few numbers of iterates:
iterate New singular points
2 1.0
3 0.41421356237309515, 2.4142135623730949
4 0.098491403357164664, 0.3033466836073424, 0.53451113595079169
4(cont’d) 0.82067879082866013, 1.2185035255879766, 1.8708684117893895,
4(cont’d) 3.296558208938321, 10.15317038760886

Only the positive ones are listed, since the property g(x) = −g(−x) assures
that the negative ones are just the negatives of the positive ones. The pre-
images of zero after n iterates are the singular points of the n + 1 times
composition of the map. Thus, from the table above, the singular points
of the two-times composition g(g(x)) are 0 and 1, while the singular points
of the three-times composition (used in finding the period three orbits) are
0,1,.41... and 2.41....

Now we use mapExplorer to look for periodic orbits. To avoid division
by zero problems, and also spurious fixed points cause by the singularities,
we must search separately within each subinterval bounded by the singu-
lar points of the composition. If we use plotComposition in the interval
[.1, .9] we find that there is an unstable periodic orbit near x = .6. Using
findPeriodicOrbit we find that the more exact value is .5769769769. The
script shows the behavior of an orbit started near this point. The orbit ini-
tially oscillates between positive and negative values, and as the instability
grows, the oscillation breaks down. An examination of the composition for
x > 1 reveals no periodic orbits there.

Using a similar procedure in the script, we find the positive ”seeds” of a
number of unstable period-3 orbits. These are at x = .228, .797, 2.07

As an example, we also find an unstable period-4 orbit starting from
x = .105

3

Since all the periodic orbits are unstable, they have no attractor basin
Is the map chaotic? We look for the three symptoms of chaos. First

we check for sensitive dependence on initial conditions in the script. This
is verified. The lyapunov exponent is approximately .698. Next we look for
a dense set of unstable periodic orbits. This is tricky for this map, since
the singularities prevent us from using the orbitDiagram function to make a
plot of periodic orbits in the straightforward way. From the experimentation
above, it looks like there is an unstable periodic orbit between each pair of
preimages of zero, and that these get dense near the unit interval as the
number of iterates is made large. This is conjectural and ought to be verified
more systematically. The final check for chaos is to see if the set of points
visited by the orbit is ”ergodic” in some subregion of the domain, i.e. whether
there is some collection of subintervals for which the orbit eventually comes
arbitrarily near any point. You can examine this aspect best by making a
histogram of the points in a long orbit, which we do in the script. The orbit
certainly seems to come near every point in the unit interval, as opposed to
being confined to a finite set of points as a periodic orbit would be.

Certainly, we haven’t proved that this system is chaotic. However, it
certainly barks like a dog.

An interesting characteristic of this map is that for ”most” initial condi-
tions (i.e. for initial conditions other than the pre-images of zero) the orbit
doesn’t run away to infinity. Nonetheless, the orbit is not bounded. The
longer you iterate, the higher is the maximum value you encounter. Once
the orbit is flung out to large values, it then relaxes exponentially back to-
wards the unit interval, where it rattles around some more until it is flung
out again.

3 Numerical evaluation of definite integrals

Study the convergence of the trapezoidal rule approximation of∫ b

a

√
xdx (4)

to the exact value for n = 2, 4, 8, 16, ...4096. Save your results in a list for
plotting and other future uses. Is it quadratic in 1/n as expected? Now look
at how rapidly the result converges if you use Romberg extrapolation (helped

4

by the polynomial interpolation/extrapolation routine polint) for the same
sequence of n.

First do the above for a = 1, b = 10. Then try again for a = 0 and
compare results. Does Romberg extrapolation improve your convergence as
much in this case? What is the reason for the difference between the two
cases?

Solution: The exact integral is 2
3
(b3/2 − a3/2). For the answer to the rest

of this problem, see the accompanying Python script.
Finally,just for fun, use the trapezoidal rule with Romberg extrapolation

to evaluate the integral ∫ π

0

e− cos xdx (5)

If you begin with a single interval (n = 1), how many refinement steps do
you need to achieve 6 decimal place accuracy?

Solution: The answer is 3.97746326051. You get 6 decimal place accuracy
with only 5 refinement steps (i.e. a modest 25, or 32 subintervals). See the
Python script for details of the calculation. This uses the improved version
of Romberg extrapolation, but the ”obvious” version is not much worse.

What’s a little disappointing, and very surprising, is that the ordinary
trapezoidal rule with 32 subintervals gives essentially the same accuracy as
the Romberg method, for this function. dumbTrap(f,[0.,math.pi],32)

gives 3.977463260506422, which is the same as the Romberg result to 6 dec-
imal places. This is much better accuracy than we should expect from the
trapezoidal rule, since dx = .098 and dx2 = .0096, so we ought to have an
error on the order of 1%. I am baffled and dumbfounded by the unexpected
performance of the trapezoidal rule for this function. Any ideas about what
is going on here would be very welcome. Can we say anything useful about
the class of functions for which the trapezoidal rule works this well? Students
are encouraged to experiment with other smooth functions, to see what they
can come up with.

4 Programming Project: A better trapezoidal

rule integrator

The simplest form of the trapezoidal rule integrator, dumbTrap(f,interval,n)
is wasteful if you’ve already computed the result for n = N and then want

5

to recompute it for n = 2N. The recomputation computes the sum over all
the points, whereas half the work was already done when you computed the
result for n = N.

Develop a class called betterTrap, which has dumbTrap as one of its
methods, and has the function being integrated, the interval of integration,
and the current values of n and dumbTrap(f,interval,n) as members. In-
clude a method refine(...), which computes the trapezoidal rule approx-
imation for 2n in terms of the previous value, without throwing away the
part you’ve already computed. The refine(...) method should update
the value of n and of the estimate.

Note: The init method should take the initial value of n, the interval
one is integrating over, and the function f as its argument, and compute the
initial value of the trapezoidal rule approximation.

Solution: This class is defined in the accompanying Python script. In
that script, we actually go a bit further and implement a class which does
quadrature by Romberg extrapolation.

6

