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1 Statement of the problem

We wish to find solutions of a differential equation of the form

dy

dx
= F (x, y) (1)

where y(x) is a real-valued function of one variable and F (x, y) is a real valued
function of two real variables giving the slope dy/dx at the point (x, y). The
variable y is called the dependent variable and the variable x is called the inde-
pendent variable. The labeling of the variables will vary with the problem. For
example, in dx/dt = −x2, x is the dependent variable and t (think ”time”) is
the independent variable.

2 Description of the algorithm

The approximate solution starts by dividing up the x dimension into finite inter-
vals of width ∆x, so that xj = xo+j∆x. The object is to find the corresponding
yj , which is shorthand for y(xj). If we know the mean slope sj ≡ (yj+1−yj)/∆x
in the jth interval, then the solution at the points xj is given exactly by the for-
mula

yj+1 = yj + sj∆x (2)

which can be solved from left to right starting from knowledge of yo. The
procedure is illustrated in the left panel of Fig. 1. The rub is that we must find
some way of evaluating the mean slope sj .

The function F (x, y) gives us the slope at a given point, but we can’t use
it to get the exact answer because we don’t know y(x) between the current
value xj and the next point we want to solve for. However, if F is a continuous
function (think ”well behaved, no jumps or other wild behavior”) then when ∆x
is small the mean slope will be approximated by the slope evaluated at either
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endpoint of the interval. Thus, a simple approximation is to set sj = F (xj , yj),
which is known if we know the solution up to the point (xj , yj). This leads to
the iteration

yj+1 = yj + F (xj , yj)∆x (3)

which is known as Euler’s method. It works, and it does give us an answer which
converges to the correct solution as ∆x is made smaller, but the error doesn’t
decrease very rapidly as ∆x decreases. In fact, it can be shown that the error
only decreases in proportion to ∆x. If you want to improve the accuracy by a
factor of 100, you need to use 100 times more points to get from the starting x
to the finish line. The result of one Euler step, relative to the correct solution,
is illustrated by the arrow marked ”Euler” in the right hand panel of Fig. 1.

With a little more work we can do better. If we instead evaluate the slope
function F at the midpoint of the interval, we will have a better approximation
to the mean slope. The value we want is F (xj + ∆x/2, y(xj + ∆x/2)), and the
resulting slope is indicated by the red solid arrow in Fig. 1. The problem is that
we don’t know y(xj +∆x/2)), so we can’t evaluate the function there. However,
we can approximate this midpoint value of y by ym ≡ yj + F (xj , yj)∆x/2 and
then set sj = F (xj +∆x/2, ym); this slope is indicated by the dashed red arrow
in Fig. 1, and is a close approximation to the actual midpoint slope. Using this
estimate yields the midpoint method, summarized by the iteration

ym = yj +
1
2
F (xj , yj)∆x

yj+1 = yj + F (xj + ∆x/2, ym)∆x
(4)

With a fair amount of algebra it can be shown that the error in this case de-
creases in proportion to (∆x)2. Now, to increase the accuracy by a factor of
100, we only need to use 10 times as many points.

With extreme cleverness and vastly many pages of algebra, it was discovered
that there is a way of making use of evaluations of the slope function at four
intermediate points in order to yield an algorithm whose error decreases in
proportion to (∆x)4. This is the Runge-Kutta algorithm. It is much harder
to justify on a graphical basis,but the mathematics underpinning the accuracy
of the method is firm. It is so subtle though, that there is no known way of
formulating higher order extensions of the method involving more intermediate
evaluations; indeed it is not even know whether such methods exist for arbitrarily
high orders. The question is academic, however, since the fourth order Runge-
Kutta method suffices for almost all scientific purposes. It is a kind of gift from
the Gods of Mathematics that such a thing exists. The Runge-Kutta method
is defined by the iteration

hh = ∆x/2, h6 = ∆x/6, xh = xj + hh, dydx = F (xj , yj)
yt = yj + hh · dydx, dyt = F (xh, yt), yt1 = y + hh · dyt

dym = F (xh, yt1), yt2 = y + ∆x · dym, dym1 = dym + dyt, dyt1 = F (xj + ∆x, yt2)
yj+1 = yj + h6 · (dydx + dyt1 + 2dym1)

(5)
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3 Performance of the algorithm

In the following, we use the three methods described above to solve the equation

dy

dx
= −xy (6)

which has the exact solution y(x) = y(0) exp(−x2/2). Figure 2 shows the dif-
ference between the exact and approximate solution for each method, for a step
size ∆X = .5, run out to x = 5, i.e. 10 steps. The maximum error of the Euler
method is somewhat over 0.12, for the midpoint method is about 0.02, and for
the Runge-Kutta method is so small that it is not visible on the graph. Direct
examination of the results shows the maximum error to be .002. These graphs
were produced by the Advanced example script. You should try re-running with
smaller ∆x (and correspondingly larger number of steps) to see how the results
change

But wait – at the larger values of x, the midpoint method actually has
larger errors than the Euler method. What is going on? We can get a better
idea of the problem by running the solution out to 15 steps, as shown in Fig.
3. we see that the error grows exponentially. This is an example of numerical
instability. The midpoint method is accurate, but for this particular form of
F (x, y) has a spurious instability which grows exponentially, no matter how
small the initial amplitude. The instability is spurious in the sense that the
original differential equation has no such instability. It is introduced by the
numerical approximation.

Instabilities of this sort are dependent on the kind of system one is integrat-
ing. In the present case, the instability arises because the decay rate becomes
very large when x is large, which requires a small enough ∆x to keep the insta-
bility in check. In Fig 4, we integrate out to x = 7.5 but use a step size of ∆x
= .1 instead. In this case, the instability is kept under control, at least out to
the value of x we have covered.

Also, if you try the system with F (x, y) = −y instead, you will find the
midpoint method has no numerical instability.

4 Simple implementation

Under construction. See example script

5 Object-oriented implementation in Python

Under construction. See example script

6 Use of ClimateUtilities implementation

The object implementation of ODE integration in the ClimateUtilities mod-
ule is called integrator. It defines a class that implements Runge-Kutta in-
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Figure 2:
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Figure 3:
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Figure 4:
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tegration, and works for 1D problems as well as problems involving multiple
dependent variables. It also has features allowing for optionally passing parame-
ters to the slope function. After importing the module, type help(integrator)
or help(ClimateUtillities.integrator), depending on how you did the im-
port. See the example script for examples of use.

7 Further reading

See Numerical Recipes, Cambridge University Press, Chapter 16. The book
comes in editions for many computer languages, Python unfortunately not yet
among them. The algorithms are well described whatever language you choose.
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