
2008 S8 Covariant Electromagnetism: Problems

Questions marked with an asterisk are more difficult.

1. Eliminate B instead of H from the standard Maxwell equations. Show that the
effective source terms are now a magnetic charge density −∇ · M and a magnetic current
density ∂M

∂t in complete analogy with the electric polarization P. This illustrates that the
choice of B instead of H for the fundamental magnetic field is governed by the assumption
that magnetic effects in atoms are really the result of electric currents. What would be
the effect of eliminating E instead of D?

2. A crude model of a polarized atom is an electron cloud of charge −Q and radius a,
with a spherical nucleus of charge +Q and radius b, the centre of which is displaced by d

from the centre of the cloud. Show that the dipole moment of such an atom is p = Qd.
(Hint: the answer is independent of origin; take the origin at the centre of the cloud.)

If there are N such atoms per unit volume then P = Np. Show that the spatially
averaged current density is Jb = ∂P/∂t. For this purpose we can take P spatially uniform,
and just average over a single unit cell. Note that the cell volume is 1/N . You should find
that the answer is independent of whether you assume the electron cloud moves relative
to a fixed nucleus, or vice versa, or anything in between.

*3. Show that the spatially averaged charge density in the atomic model of problem 2 is
ρb = −∇·P. This is more difficult, as it involves spatial variation, but only first order. Take
the spatial average by integrating over a smooth averaging function such as a Gaussian
S(R) = e−r2/R2

/(
√
πR)3 with R≫ a:

ρb(r) =

∫

S(r− r′)ρ(r′) d3r′.

In the integration over each charged sphere replace the averaging function S(r− r′) by the
value at the centre of the sphere S(r− r′0), which is correct to second-order in a/R. Note
that this entails that the positive and negatively charged spheres have different values of
S, evaluated at points separated by d. To the same degree of accuracy the integration
over each unit cell is then Qd · ∇S which we can write as a volume integral over a local
density P · ∇S. The result follows on integration by parts.

4. Poynting’s Theorem. A long straight wire radius a lies along the z-axis. The wire
is subject to a uniform field E = Ek which induces a current density J = σE, where σ is
the conductivity of the material. Show that the B field in the exterior region is

B(r) =
µ0a

2 J ∧ r

2ρ2

where ρ2 = x2 + y2. Find Poynting’s vector S, and show that it represents an inward
energy flow. Evaluate the surface integral of S over a cylinder of radius b, (b > a) and
length l, and interpret the result in terms of energy dissipation in the wire.

5. Use the equation on page 9 to find expressions for Poynting’s vector and the energy
density in generalized units. (Note that because of the four equations linking the six
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constants the answer is not unique. The answer can be expressed in terms of two, for
example α and γ.) Hence show, using the table on page 13, that in Gaussian units
Poynting’s vector is given by (c/4π)E ∧B, while the energy density is (E2 +B2)/8π.

6. Using the B field of a long straight wire (see question 4) find an expression for the
force per unit length between two parallel wires carrying the same current. The S.I.
definition of the Ampère is ‘that constant current which, if maintained in two straight
parallel conductors of infinite length, of negligible circular cross-section, and placed 1
meter apart in vacuum, would produce between these conductors a force equal to 2×10−7

newton per meter of length.’ Hence show that the numerical value of µ0 is 4π× 10−7, and
assign dimensions to it. In the corresponding definition of the cgs emu of current the wires
are 1 cm apart and the force is two cgs force units (dyne) per cm. Hence show that the
emu of current is 10 A. (You will need to show that 1 dyne is 10−5 N.)

7. Show that in suffix notation Maxwell’s equations become

∂Ei

∂xi
= ρ/ǫ0

∂Bi

∂xi
= 0

ǫijk
∂Ek

∂xj
+
∂Bi

∂t
= 0

ǫijk
∂Bk

∂xj
− 1

c2
∂Ei

∂t
= µ0Ji.

Hence show that if we define Bij = ǫijkBk, and correspondingly Bi = 1
2 ǫijkBjk, then the

three equations containing B can be written

ǫijk
∂Bjk

∂xi
= 0

ǫijk

(

∂Ek

∂xj
+

1

2

∂Bjk

∂t

)

= 0

∂Bij

∂xj
− 1

c2
∂Ei

∂t
= µ0Ji.

Note that another contraction of the curl E equation with ǫilm gives

∂Em

∂xl
− ∂El

∂xm
+
∂Blm

∂t
= 0.

*8. Use Maxwell’s equations to derive

ǫ0

(

E∇ · E− E ∧ (∇∧ E)
)

+
1

µ0

(

B∇ · B + (∇∧B) ∧B
)

− 1

µ0c2

(

∂E

∂t
∧ B + E ∧ ∂B

∂t

)

= ρE + J ∧ B.

(This involves all four equations, each combined with either E or B). Combine terms to
derive

∂Tij

∂xj
+
∂gi

∂t
+ fi = 0

where Tij = ǫ0
(

1
2E

2δij − EiEj

)

+ (1/µ0)
(

1
2B

2δij − BiBj

)

, g = E ∧ B/µ0c
2 and f is the

Lorentz force density. Interpret this result in terms of conservation of momentum.
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9. Plane Waves. The equations satisfied by the potentials in the absence of sources are

−∇ ·
(

∂A

∂t

)

−∇2Φ = 0 ∇(∇ · A) −∇2A +
1

c2
∂2A

∂t2
+

1

c2
∂∇Φ

∂t
= 0

Show that in the Lorentz gauge these uncouple to give homogeneous wave equations.
Consider plane wave solutions in the Lorentz gauge

Φ =ϕ sin(k · x− ωt) A = A sin(k · x − ωt)

with constant amplitudes ϕ (scalar) and A (vector). Show that these are solutions of the
wave equation provided ω2/c2 = k2, and that they satisfy the Lorentz gauge condition
provided k · A = ωϕ/c2. This defines ϕ in terms of A but leaves A arbitrary. There are
thus three independent solutions: for example,

A0 =





0
0
A



 A1 =





A
0
0



 A2 =





0
A
0





Show that when k = ẑω/c, ϕ1and ϕ2 are zero but ϕ0 is not. Show that the fields
derived from the solution with A0 and ϕ0 vanish, and find the fields derived from the
potentials with A1 and A2, representing the two transverse polarization states. Find a
gauge transformation function χ which eliminates the solution involving A0 and ϕ0.

10. Show that the metric tensor for the two-dimensional oblique co-ordinates on page 42
is

(L−1)TL−1 =

(

α−2 −γ/α2β
−γ/α2β (α2 + γ2)/α2β2

)

.

Confirm that the squared distance from the origin to the point (x′1, x
′
2) = (13, 9) is 200.

11. Unifom Field A uniform (constant both spatially and in time) electromagnetic field
F is represented by a four-potential A. Since F is derived from A by a single differentiation,
A must depend linearly on the co-ordinates: Aµ = Kµνxν . Find the relationship between
K and F. What constraint on K does the Lorentz gauge condition represent?

12. Show that the E and B fields transform under a Lorentz transformation as

E′
‖ = E‖ E′

⊥ = γ(E⊥ + v ∧B)

B′
‖ = B‖ B′

⊥ = γ(B⊥ − v ∧ E/c2)

where E‖ and E⊥ denote the vector components parallel and perpendicular to v.
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13. D = E2/c2 −B2 and G = E · B are both Lorentz invariants. Show this

a) by writing them in terms of manifestly invariant constructions;

b) by explicitly evaluating them in two reference frames using the results of problem 12.
(Remember E‖ = (E · v/v2)v. )

Discuss the possibility of finding reference frames in which either E or B are zero.

14. Non-relativistic motion in uniform field. The non-relativistic equation of motion
of a charged particle in a uniform fields E and B is

m
dv

dt
= q(E + v ∧B).

The solution divides into four classes:

1) B = 0;

2) E = 0;

3) E ·B = 0;

4) E ·B 6= 0.

Case 1) is simply motion under a constant force, and the solution is immediate: v =
v0 + (q/m)Et. Solve for v in cases 2) and 3), and show that the solution in case 4) is
essentially the sum of solutions in cases 1) and 3). You may find it easier to go into
components, and take the z-axis along B, and E in the x-direction in case 3).

*15. Write out the spatial components of the equation of motion of a charged particle:

dpµ

dτ
= eFµ

νu
ν or

duµ

dτ
=

e

m
Fµ

νu
ν

and show that they represent the usual definition of the Lorentz force. (Remember dt/dτ =
γ.) What does the zeroth component represent?

One way of solving these coupled equations is to use eigenvectors to find uncoupled
combinations. The matrix Fµ

ν is not symmetric but it still has a complete set of right
eigenvectors dµ

(p) satisfying Fµ
νd

ν
(p) = λ(p)d

µ
(p), and left eigenvectors satisfying cµ(p)F

µ
ν =

λ(p)cν(p). Show that the eigenvalues λ(p) are

λ2 =

(

D

2
±
√

(
D2

4
−G2)

)

in terms of the field invariants of problem 13. (Without loss of generality we can take the
z-axis along B, and E in the xz-plane.) Show that there are now six classes of solution:
D > 0, D = 0 and D < 0 with either G = 0 or G 6= 0.

How do these correspond with the classes in the non-relativistic limit (problem 14)?
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16. The relativistic case corresponding to case 1) of problem 15 is G = 0 and D > 0. Note
that the Fµ

ν matrix is now symmetric so cµ(p) = dµ
(p). Verify that the eigenvalues and

eigenvectors of Fµ
ν in this case are (taking the x-axis along E):

λ(1) = 0 dµ
(1) =







0
0
1
0







λ(2) = 0 dµ
(2) =







0
0
0
1







λ(3) =
E

c
dµ
(3) =







1/
√

2
1/

√
2

0
0







λ(4) = −E
c

dµ
(4) =







1/
√

2
−1/

√
2

0
0







Hence show that the combinations Wp(τ) = cµ(p)u
µ satisfy uncoupled equations, and that

the solution is

uµ =
∑

p

Wp(0) exp(ω(p)τ)d
µ
(p) where Wp(0) = cµ(p)u

µ(0)

and ωp = qλ(p)/m. Show that this reduces to

uµ(τ) =







u0(0) cosh(ωτ) + u1(0) sinh(ωτ)
u0(0) sinh(ωτ) + u1(0) cosh(ωτ)

u2(0)
u3(0)






.

17. In a reference frame S a wire straight wire of radius a carries a current I. The current
four-vector is thus

jµ =







0
0
0

I/πa2






for x2 + y2 < a2.

A reference frame S′ moves with velocity v = vk relative to S. Find the components of
the current four-vector in S′. Comment on the emergence of a non-zero charge density.

18. In a reference frame S there is a uniformly charged sphere with radius a. The current
four-vector is

jµ =
3Qc

4πa3







1
0
0
0






for x2 + y2 + z2 < a2.
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and the potential four-vector is

Aµ =











































µ0Qc

4πr







1
0
0
0






for x2 + y2 + z2 > a2

µ0Qc

4πa

(

3

2
− r2

2a2

)







1
0
0
0






for x2 + y2 + z2 < a2.

Find these four-vectors in a reference frame S′ moving with speed v along the x-axis.
Find the fields in S′ in the external region either by transforming the fields in S, or by
differentiating the potential in S′.

19. Spinless Hydrogen in a Magnetic Field. Spinless hydrogen is a model system in
which the electron in hydrogen is replaced by a spinless particle. The Schrodinger equation
is

1

2m
(p + eA)2ψnlm(r) − eΦψnlm(r) = E ψnlm(r)

where the electron has charge −e, Φ = e/4πǫ0r is the scalar potential of the proton
(assumed infinitely heavy) and A = 1

2B ∧ r is the vector potential of an external uniform
magnetic field. The n = 2, l = 1 and m = ±1 states have eigenfunctions and eigenvalue
(in zero B-field)

ψ2p± =
1

8
√
πa3

x± iy

a
e−r/2a E2p± =

h̄2

8ma2

where a is the Bohr radius.
Show that the B-dependent terms in the Hamiltonian are

e

2m
L ·B and

e2

8m
(B2r2 − (B · r)2).

(You may find it helpful to start by proving that ∇·A = 0, and hence that p ·A = A ·p.)
Show that if the term quadratic in B is ignored these functions are still eigenfunctions,

but the eigenvalues change to E2p±±eh̄B/2m. Find the gauge-invariant current, and show
that it circulates around the z-axis, and that, although the wavefunction is unchanged, the
current increases/decreases linearly with B in the +/− state respectively.
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