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Maxwell’s equations are:

∇ · D = ρ

∇ · B = 0

∇∧ E +
∂B

∂t
= 0

∇ ∧H − ∂D

∂t
= J

In these equations:

ρ and J are the density and flux of free charge;

E and B are the fields that exert forces on charges and currents (f is force per unit volume):

f = ρE + J ∧B; or for a point charge F = q(E + v ∧B);

D and H are related to E and B but include contributions from charges and currents bound

within atoms:

D = ǫ0E + P H = B/µ0 −M;

P is the polarization and M the magnetization of the matter.

µ0 has a defined value of 4π 10−7 kgmC−2.
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Maxwell’s equations in this form apply to spatial averages (over regions of atomic size) of the

fundamental charges, currents and fields. This averaging generates a division of the charges

and currents into two classes: the free charges, represented by ρ and J, and charges and cur-

rents in atoms, whose averaged effects are represented by P and M. We can see what these

effects are by substituting for D and H:

∇ · E = (ρ −∇ · P) /ǫ0

∇ ·B = 0

∇∧ E +
∂B

∂t
= 0

∇ ∧B − ǫ0µ0
∂E

∂t
= µ0

(

J +
∂P

∂t
+ ∇∧M

)

.

We see that the divergence of P generates a charge density: ρb = −∇ · P
and the curl of M and temporal changes in P generate current: Jb =

∂P

∂t
+ ∇∧ M.

Any physical model of the atomic charges and currents will produce these spatially averaged

effects (see problems).
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This suggests that if we do not make the spatial average we can treat all charges and currents

on the same basis, and obtain the fundamental classical equations relating charges, currents

and electromagnetic fields, the Microscopic Maxwell Equations:

∇ · E = ρ/ǫ0

∇ · B = 0

∇∧E +
∂B

∂t
= 0

∇∧ B− ǫ0µ0
∂E

∂t
= µ0J

M1

M2

M3

M4

These are the equations we shall be working with from now on, and we shall make no further

reference to D, H, P or M.

The physical interpretation is provided by the force density:

f = ρE + J ∧B.

We next look at three simple consequences.
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Local Conservation of Charge

Take 1/µ0 div M4+ǫ0 ∂/∂t M1 → ∇ · J + ∂ρ/∂t = 0.

This equation is known as the continuity equation and implies local conservation of charge.

Consider an arbitrary volume V in a current flow. The total charge inside V at time t is

Q(t) =

∫

V

ρ(r, t) d3r

If charge is locally conserved then the only way in which charge can leave V is by flowing

through the bounding surface S:

−dQ

dt
=

∫

V

−∂ρ

∂t
d3r =

∫

S

J · dS =

∫

V

∇ · J d3r.

This must hold for an arbitrary volume, so the integrand must vanish:

∂ρ

∂t
+ ∇ · J = 0

This ensures the local conservation of charge, and is the prototype for other local conserva-

tion laws, which have a density term, a flux term, and in general a loss or source term as well

if the quantity is not absolutely conserved but can transform into something else.
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Conservation of Energy (Poynting’s Theorem)

We can find a local conservation law for energy in the electromagnetic field.

Take B · (M3) and subtract E · (M4):

(

B · (∇∧E) − E · (∇∧ B)
)

+

(

B · ∂B

∂t
+ ǫ0µ0E · ∂E

∂t

)

+ µ0E · J = 0

We can combine the terms in the first bracket as ∇ · (E ∧ B).

We can rewrite the partial derivatives using E · ∂E

∂t
=

1

2

∂E2

∂t
and similarly for the B terms.

Thus we have a conservation law with a loss/source term:

∇ · S +
∂u

∂t
+ E · J = 0

where:

S =
1

µ0
E ∧B is Poynting’s vector and represents the energy flux in the field;

u =
ǫ0
2

E2 +
1

2µ0
B2 is the energy density in the field;

E · J represents the rate per unit volume of energy loss from the EM field to the matter,

represented by the current (or from matter to field if negative).
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Wave Equations for E and B

Eliminate B by taking ∂/∂t of M4 and subtracting the curl of M3:

−ǫ0µ0
∂2E

∂t2
−∇∧∇ ∧ E = µ0

∂J

∂t
.

Using the vector identity curl curl = grad div − ∇2, and substituting from M1:

∇2E − ǫ0µ0
∂2E

∂t2
= µ0

∂J

∂t
+ ∇ρ/ǫ0

which is the inhomogeneous wave equation with wave speed c where

c2 =
1

ǫ0µ0

and the source term is µ0
∂J

∂t
+ ∇ρ/ǫ0.

Similarly we can eliminate E: ∇2B− ǫ0µ0
∂2B

∂t2
= −µ0∇∧ J.
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The word COVARIANT, in this context, means the same as form invariant:

some transformation of the quantities in the equations produces no change in the form of the

equations.

Some of the transformations are induced by physical operations (rotations, changes of veloc-

ity) that can be understood in either an active or passive sense; for example

the system is rotated in space (ACTIVE)

or the same system is described relative to two different co-ordinate systems. (PASSIVE)

I shall take ALL TRANSFORMATIONS IN A PASSIVE SENSE.

We shall discuss the covariance of Maxwell’s equations under the following transformations:

Change of Units (!)

Rotation (including Reflection)

Duality Transformation

Gauge Transformation

Lorentz Transformation
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In Maxwell’s equations there are four places we can put constants. However, to understand

all the historical arguments we must assume the existence of magnetic charge and current,

which increases the number of constants to six:

∇ · E = αρ

∇ · B = κρm

∇ ∧E + β
∂B

∂t
= −λJm

∇∧ B− γ
∂E

∂t
= δJ

The six constants α, β, γ, δ, κ and λ are not all independently variable.

If we re-work the derivation of the wave equations we find the coefficient of the time derivia-

tive is βγ:

βγ =
1

c2

This is an absolute requirement.
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If we re-work the conservation of electric charge we find

αγ
∂ρ

∂t
+ δ∇ · J = 0

so if the unit of charge in J is the same as in ρ then

δ = αγ
and similarly for magnetic charge

λ = κβ.

Most systems of units assume that E (B) is the force on a unit electric (magnetic) charge.

However, if we re-work Poynting’s theorem we find

∇ · (E ∧ B) +
γ

2

∂E2

∂t
+

β

2

∂B2

∂t
+ δE · J + λB · Jm = 0

so we require the coefficients of E · J and B · Jm to be the same:

δ = λ.

This leaves two degrees of freedom:

The value of α

The way that 1/c2 is factored between β and γ.

Various considerations have seemed relevant at different times.
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Rationalized and Unrationalized Units

If we use M1 to derive Coulomb’s law we find

F =
αq1q2

4πr2
r̂

so we have a choice as to whether the 4π apears in the equation, or in the solution.

Maxwell, following the example of Newton’s law of gravitation F =
Gm1m2

r2
chose to put a

factor of 4π in α. (But note he did not use an analogue of G — see below.)

It was later recognized (Heaviside) that the factor of 4π appears in solutions with spherical

symmetry, and a factor of 2π in problems with cylindrical symmetry (like the B field of a

straight wire carrying a current), so it seemed more ‘rational’ to put the factors of 4π in the

solution.

On the whole this idea has found favour, and the modern fashion is for ‘rationalized’ rather

than the older ‘unrationalized’ units.
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Dimensions

In mechanics it is normally assumed (Gauss) that there are three physical dimensions, and

thus base units, of mass, length and time.

Units for all other quantities, such as velocity or force, are derived from these.

In any physical equation the dimensions must be equal in all terms.

How to fit Electromagnetism into this scheme has caused the most intense debate.

In fact the number of dimensions used in describing a physical situation is a matter of choice,

convenience and personal preference.

We can choose to increase the number of dimensions:

for example an atmospheric model may have different units for height and distance,

but that will introduce a new physical constant with dimensions height/distance.

We can reduce the number of dimensions, and eliminate physical constants:

for example temperature is a measure of energy —

there is a conversion constant k = 1.380 6503(24)× 10−23 J K−1.

We can view the speed of light (m s−1), Planck’s constant (J Hz−1) or the Avogadro constant

(mol−1) in the same way.

We could even choose to eliminate mass as a dimension by setting G = 1.

S8: Covariant Electromagnetism UNITS 12

Maxwell’s Choices

Maxwell used unrationalized units, and in his development of the theory it seemed natural to

choose β = 1, and hence γ = 1/c2.

He also took the view that the number of physical dimensions was naturally three:

In all dynamical sciences it is possible to define . . . units

in terms of the three fundamental units of Length, Time and Mass.

This led to two possible systems of units:

The electrostatic units, based on forces between electric charges, in which α = 4π

The electromagnetic units, based on forces between magnetic charges, in which κ = 4π.

The unit sizes are in the ratio of c, (emu larger), and the dimensions differ correspondingly:

[Qesu] = [L3/2][M1/2][T−1] [Qemu] = [L1/2][M1/2].

Gaussian Units

Maxwell never chose between these systems. A later compromise was to use esu for E, ρ and

J and emu for B, ρm and Jm. This is the standard system used in Jackson, and Landau and

Lifshitz.
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System: α β γ δ κ λ

esu 4π 1 1/c2 4π/c2 4π/c2 4π/c2

emu 4πc2 1 1/c2 4π 4π 4π
Gaussian 4π 1/c 1/c 4π/c 4π 4π/c

SI µ0c
2 1 1/c2 µ0 µ0 µ0

Heaviside 1 1/c 1/c 1/c 1 1/c

Pros and Cons

Non-obvious and unphysical fractional powers in dimensions in Gaussian units

Unnecessary physical constant in SI units

Both weak arguments, and cancel each other out

Inconvenient unit sizes in Gaussian units

Extraordinarily weak argument!

Electric and magnetic fields have different dimensions in SI units

The only good argument, especially in a relativistic context, as we shall see.

‘The CGS system, still used by certain physicists, is absolutely inadequate for an electrical

engineer who designs a turbine generator or an electric power transmission system.’ (IEC)

‘All systems of units are absurd’ (Binney)
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Vectors under Rotation

The cartesian co-ordinates x1, x2, x3 assigned to a point in space will change when the axes

are rotated according to

x′ = Rx where x =





x1

x2

x3



 R =





R11 R12 R13

R21 R22 R23

R31 R32 R33





R is a rotation matrix, defined by RTR = I.

It is useful to be able to use suffix notation and the Einstein summation convention:

x′
i =

3
∑

j=1

Rijxj = Rijxj with RjiRjk = δik. (Note that
∂x′

i

∂xj
= Rij .)

This implies detR = ±1;

We shall for the moment consider only proper rotations, for which detR = +1.

Then vectors under rotation are defined as quantities which transform in this way, such as

velocity v, momentum p and force F. A vector is also a tensor of rank one.

A tensor of rank zero, also known as a scalar, is an invariant under rotation, such as mass,

charge, energy.
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Tensors of higher rank.

Tensors of rank two occur in linear relations between vectors.

For example, in a crystalline material the electrical conductivity will generally depend on the

direction of the electric field, and the direction of current flow will not be parallel to the field.

The coefficient of the linear relationship is the conductivity tensor σσσ with components σij :

Ji = σijEj





J1

J2

J3



 =





σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33









E1

E2

E3



 J = σσσE

and is a tensor of rank two, with 9 = 32 components.

We can deduce the transformation property of σσσ from that of the vectors

J′ = RJ = RσσσE = RσσσRT RE = σσσ′E′

and hence σσσ′ = RσσσRT . This is clearer in suffix notation:
T ′

i′j′ = Ri′iRj′jTij

for any tensor T: each suffix is transformed in an identical way. We can generalize to tensors

of arbitrary rank.

Note that tensors of rank higher than two can only be handled with suffix notation, as there

is no three-dimensional generalization of the matrix.
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Unit Tensor

The tensor I with components Iij = δij thus has the same components in all rotated co-

ordinate systems (an invariant tensor):

I′ = RIRT = RRT = I.

Contraction

How do scalar products become scalar?

Consider the rate P at which a force does work on a particle: P = F · v:

P = F · v = ( F1 F2 F3 )





v1

v2

v3



 = Fivi = δijFivj .

Evaluate this in the rotated system, where F′ = RF and v′ = Rv:

P ′ = F′ · v′ = (F1 F2 F3 )RTR





v1

v2

v3



 = RkiRkjFivj = δijFivj = Fivi = F · v = P.

The process of setting two indices equal and summing over them is called contraction, and

reduces the tensor rank by two. Thus Fivi, x2 = xixi, and σii are all scalars.
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Vector Products

To write a vector product in suffix notation we need to define the alternating tensor or Levi-

Civita density ǫijk:

ǫijk =

{

1 if ijk is a even permutation of 123
−1 if ijk is an odd permutation of 123
0 otherwise

Then we find that (A ∧ B)i = ǫijkAjBk.

Thus, since A ∧ B is obtained by contracting vectors with ǫijk, it is vector provided ǫijk is a

third-rank tensor.

We can use the standard rule for a third rank tensor:

ǫ′i′j′k′ = Ri′iRj′jRk′kǫijk.

This expression is in fact related to detR; (this follows from the connection between ǫijk and

permutations, and the definition of a determinant):

ǫ′ijk = ǫijk detR

and so ǫijk is indeed a tensor under proper rotations.
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Combinations of ǫijk

Two ǫijk symbols with one index contracted can be expanded:

ǫijkǫij′k′ = δjj′δkk′ − δjk′δkj′ and hence ǫijkǫijk′ = 2δkk′

Scalar and Vector Fields

Applying these ideas to the transformation of fields (i.e. functions of position with scalar or

vector or tensor values) introduces two new problems: the transformation of the argument,

and differentiation with respect to the argument.

Consider a scalar field such as charge density ρ: the value at a point is unchanged by rota-

tion, but the label of the point has changed:

ρ′(x′) = ρ(x) where x′ = Rx or simply ρ′(x′) = ρ(RTx′).

Vector fields work in exactly the same way with respect to their arguments, but in addition

we have to rotate the components of the vector field:

E′(x′) = RE(RT x′).
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Differentiating Fields

Differentiation with respect to position is a vector operation:

Consider differentiating a scalar field such as ρ:

∂ρ′

∂x′
i

=

(

∂xj

∂x′
i

)

∂ρ′

∂xj
=
(

R−1
)

ji

∂ρ

∂xj
.

But this is just (R−1)T∇ρ = R∇ρ.

Thus ∇ρ is a vector. Similarly differentiating a vector field gives a second rank tensor

∂Ej

∂xi
.

By contraction we can obtain a scalar, the divergence:

∇ · E =
∂Ei

∂xi

and using ǫijk we can obtain a vector, the curl:

(∇∧ E)i = ǫijk
∂Ek

∂xj
.
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Two of Maxwell’s equations are thus of the form

Scalar = Scalar: ∇ · E = ρ/ǫ0 ∇ · B = 0

and two are of the form

Vector = Vector: ∇∧ E +
∂B

∂t
= 0 ∇∧ B− ǫ0µ0

∂E

∂t
= µ0J.

(Note that the 0 in M3 is not the same as the 0 in M2: it is the null vector not the number

zero. It is three zeros.)

Thus the very way we write Maxwell’s equations, as vector equations, ensures that they are

covariant under proper rotations.
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Any rotation R with detR = −1 is called an improper rotation. Obviously if we change the

sign of all the components of R we obtain a proper rotation R′ (because R is a 3 × 3 matrix

and 3 is odd):

R = −R′ = PR′ where P =





−1 0 0
0 −1 0
0 0 −1



 = −1





1 0 0
0 1 0
0 0 1



 .

Thus any improper rotation R is a combination of a proper rotation R′ and the Parity opera-

tion P. The passive interpretation of P is that it involves the use of a reversed, and therefore

left-handed, co-ordinate set.

Our discussion of transformation of vectors, and the scalar nature of dot products, is valid for

arbitrary rotations. Under parity P:

Scalars (and even-rank tensors) are unchanged: ρ′(r′) = ρ(Pr) = ρ(−r);

Vectors (and odd-rank tensors) change sign: E′(r′) = PE(Pr) = −E(−r).

(But note the change in argument, which can undo the sign change!)

But for the alternating tensor this is not so:

ǫijk is defined to be an invariant tensor (ǫ123 = 1 etc) — but under P it ought to change sign.

Thus it is NOT a tensor under P. It is known as a PSEUDOTENSOR.
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Polar and Axial Vectors (True Vectors and PseudoVectors)

Vectors can be classified by their behaviour under P:

POLAR vectors change sign, in the same way that the co-ordinates do;

AXIAL vectors or PSEUDOVECTORS do not change sign.

Our ordinary vector notation deos not distinguish them and so we cannot by simple inspec-

tion determine whether Maxwell’s equations are covariant under P.

We assume that charge and charge density ρ are scalars.

Then E (force per unit charge) is a polar vector, and M1 is scalar = scalar.

∇∧ E is then a pseudovector, and hence B is a pseudovector.

M2 is thus pseudoscalar = zero, M3 is an equality between pseudovectors, and M4 an

equality between vectors.

Thus Maxwell’s equations are covariant under P, and B is an axial vector.
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Manifest Covariance

Can we write Maxwell’s equations so that it is obvious that they are covariant under P?

We define the dual tensor Bij = ǫijkBk:

B =





0 Bz −By

−Bz 0 Bx

By −Bx 0



 .

Any axial vector can be associated with a true antisymmetric second rank tensor in this way

(or a polar vector with an axial second rank tansor).

M4 can then be written
∂Bij

∂xj
− 1

c2

∂Ei

∂t
= µ0Ji.

M2 and M3 can also be written in a way which involves only true tensors, and so they are

also covariant under P (see problems).

Thus in this notation the parity transformation is just a special case of a rotation, and all

quantities transform in the appropriate way: scalars unchanged, vectors and tensors of odd

rank acquire a minus sign, even rank tensors unchanged:

Electromagnetism, like Mechanics, is covariant under P.
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Maxwell’s Equations have a fairly obvious E → B, B → −E symmetry. This is more ex-

plicit if we re-introduce magnetic charge density ρm and current density Jm:

∇ · E = µ0c
2ρ

∇ · B = µ0 ρm

∂E

∂t
− c2∇∧ B = −µ0c

2J

∂B

∂t
+ ∇∧ E = −µ0 Jm

We define the duality transformation D by
(

E′

cB′

)

= D
(

E
cB

) (

ρ′

ρ′
m/c

)

= D
(

ρ
ρm/c

) (

J′

J′
m/c

)

= D
(

J
Jm/c

)

where the matrix D is given by D =

(

0 1
−1 0

)

.

This is is obviously a rotation matrix in the abstract (E, cB) space, and this transformation

is in fact the 90◦ example of a continuous transformation. The equations at the top can be

written

∇ ·
(

E
cB

)

= µ0c
2

(

ρ
ρm/c

)

∂

∂t

(

E
cB

)

− c∇∧D
(

E
cB

)

= µ0c
2

(

J
Jm/c

)

which are obviously covariant under any rotation in this abstract space, since the rotation

matrix commutes with D.
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This transformation has several puzzling features:

We have just seen that M2 is pseudoscalar, and M3 is pseudovector. Hence magnetic

charge is pseudoscalar.

Alternatively, magnetic charge is scalar, and the covariance under P is lost.

As far as we know ρm and Jm are both zero.

Passive View: this is a matter of convention: the most we can really say is that if we define

the electron to be electrically charged, then so are all other particles. We could still change

the description and make all charges mixed or magnetic.

Active View: the transformation relates distinct situations. So dual solutions may exist in

source-free regions, provided we can find sources for them. For example the duals

E =
1

4πǫ0r3
(3p · r̂ r̂− p) −→ B′ =

µ0

4πr3
(3m · r̂ r̂− m)

are electric and magnetic dipole fields, both of which have sources. (Note that p → m/c.)

But there is no source for a magnetic monopole field dual to the field of a point charge.

Note that D2 = −1, corresponding to reversing the definition of positive/negative charge.

This operation is charge conjugation C, and Maxwell’s equations are covariant under C.
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Since ∇ · B = 0 we can define a vector potential A such that B = ∇∧ A.

In electrostatics we can define an electrostatic potential Φ such that E = −∇Φ.

However this implies ∇∧ E = 0, which is not true in general (see M3):

∇∧E = − ∂

∂t
(∇∧A) = −∇∧

(

∂A

∂t

)

→ ∇∧
(

E +
∂A

∂t

)

= 0

This implies that we can always find A and Φ such that:

B = ∇∧A

E = −∇Φ − ∂A

∂t

Writing the E and B fields in this form ensures that the homogeneous Maxwell equations

(the ones with no source terms: M2 and M3) are identically satisfied.

The six components of E and B can thus be defined by the four components of the potentials

A and Φ.
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A and Φ are not uniquely defined by the requirement that the above differentials give the E

and B fields. Consider the following transformation (χ(r, t) is any differentiable function):

A′ = A + ∇χ Φ′ = Φ − ∂χ

∂t

If we use A′ and Φ′ to derive the fields we obtain

B′ = ∇ ∧A + ∇∧ (∇χ) = B since curl grad = 0

E′ = E + ∇
(

∂χ

∂t

)

− ∂∇χ

∂t
= E.

This is an example of a gauge transformation, and indicates that the potentials as defined

have an unphysical degree of freedom.

For example, it is well-known that we can change the electrostatic potential by a constant:

Φ′ = Φ + V0. (V0 is normally fixed by requiring Φ → 0 as r → ∞.)

But this is just a gauge transformation with χ = −V0t.

Similarly χ = χ(r) generates a transformation of A only; in magnetostatics we normally re-

quire ∇ · A = 0 and A → 0 as r → ∞.
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We are free to specify an extra relation between A and Φ; this is called choosing a gauge.

One useful choice (of several) is the Lorenz gauge:

∇ · A +
1

c2

∂Φ

∂t
= 0.

We can always choose χ to bring A and Φ to this form:

Suppose we have potentials A and Φ not in the Lorenz gauge, but with

∇ · A +
1

c2

∂Φ

∂t
= f(r, t).

Now do a gauge transformation with χ:

∇ ·A′ +
1

c2

∂Φ′

∂t
= ∇2χ − 1

c2

∂2χ

∂t2
+ f(r, t)

so we must choose χ such that

1

c2

∂2χ

∂t2
−∇2χ = f(r, t)

which always has a solution. Indeed this χ is not unique, so that there are still restricted

gauge transformations within the Lorenz gauge.
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The use of the potentials A and Φ entails that the two homogeneous Maxwell equations are

automatically satisfied. The remaining two become:

∇ · E = ρ/ǫ0 −→ −∇ ·
(

∂A

∂t

)

−∇2Φ = ρ/ǫ0

∇ ∧B − 1

c2

∂E

∂t
= µ0J −→ ∇(∇ · A) −∇2A +

1

c2

∂2A

∂t2
+

1

c2

∂∇Φ

∂t
= µ0J

In the Lorenz gauge these uncouple and simplify:

1

c2

∂2Φ

∂t2
−∇2Φ =ρ/ǫ0

1

c2

∂2A

∂t2
−∇2A =µ0J.

These are both examples of the inhomogeneous wave equation, and we next look at its solu-

tion.

S8: Covariant Electromagnetism WAVE EQUATIONS 30

1

c2

∂2g

∂t2
−∇2g = f

The linearity of the equation means that the solutions for two different f ’s can be added to-

gether. Thus we can split up f(r, t) into functions that are non-zero in different spacetime

regions. The end-point of this process is a δ-function source:

1

c2

∂2G

∂t2
−∇2G = δ(r− r′)δ(t − t′)

which is non-zero only at r′ for an instant at t′. The complete solution is then

g(r, t) =

∫

G(r, r′, t, t′)f(r′, t′) d3r′ dt′

The function G is called the Green function for the equation.

Compare the solution of Poisson’s equation as an integral over the charge distribution:

Φ(r) =

∫

ρ(r′)

4πǫ0|r− r′|d
3r′. The Green function is − 1

4π|r− r′| .
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In fact G only depends on co-ordinate differences G(r− r′, t− t′), so without loss of generality

we can take r′ = 0 and t′ = 0:

1

c2

∂2G

∂t2
−∇2G = δ(r)δ(t)

There are several ways to find a solution to this equation — see

Jackson section 6.6(2nd ed.) or 6.4 (3rd ed.)

Jackson section 12.11

Landau & Lifshitz §62

All of these very different mathematical approaches agree in finding not one Green function

but two, which I will call G+ and G−. (This is because the Green function gives a particu-

lar integral to a differential equation, to which we can add any multiple of the homogeneous

equation. The two Green functions differ by a solution of the homogeneous equation.)

G+(r, t) =
1

4πr
δ(t − r/c) or G+(r− r′, t − t′) =

1

4π|r− r′|δ(t − t′ − |r− r′|/c)

Correspondingly the other solution is G−(r− r′, t − t′) =
1

4π|r− r′|δ(t − t′ + |r− r′|/c)
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Advanced and Retarded Green Functions

G+ and G− give solutions appropriate for different boundary conditions:

G+ represents an outgoing spherical pulse emitted from r′ at time t′, and is known as the re-

tarded or causal Green function, because the wave is determined by the location and strength

of the source at earlier times; G− represents an incoming spherical pulse absorbed by the

‘source’ (or absorber), and is known as the advanced or acausal Green function, because the

wave is determined by the location and strength of the absorber at future times.

The G+ plot shows the source

at the spacetime origin radi-

ating a pulse, at speed c, for-

wards in time, weakening as it

expands.

The G− plot shows an incoming

pulse being absorbed by the

‘source’ at the origin.
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Advanced and Retarded Potentials

We can use the Green functions to solve the wave equations.

To preserve causality we choose the retarded Green function G+. (Note that in so doing we

choose a time-asymmetric solution to the time-symmetric Maxwell equations)

Φ(r, t) =

∫

ρ(r′, t′)

4πǫ0|r− r′|δ(t − t′ − |r− r′|/c) d3r′ dt′

Carrying out the t integral:

Φ(r, t) =
1

4πǫ0

∫ [ρ(r′, t′)]t′=t−|r−r
′|/c

|r− r′| d3r′

A(r, t) =
µ0

4π

∫

[J(r′, t′)]t′=t−|r−r
′|/c

|r− r′| d3r′.

These are known as the retarded potentials.

These are the formal solutions to a class of electromagnetic problems in which the source dis-

tributions of ρ and J are specified. (However these problems are usually incompletely speci-

fied, as they neglect the effect of the radiated fields on the source distributions.)
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Liénard-Wiechert Potentials

For a point charge q in arbitrary motion we can obtain an explicit form for the potentials.

The result is not quite what you might expect . . .

At time t the charge is at rq(t); thus we have

ρ(r′, t′) = qδ(r′ − rq(t
′)) and J(r′, t′) = qvδ(r′ − rq(t

′)).

Putting ρ into the integral with G+ we obtain

Φ(r, t) =
q

4πǫ0

∫ δ(r′ − rq(t
′)) δ

(

t′ − t + |r−r
′|

c

)

|r− r′| d3r′ dt′

We do the integrals in the reverse order as compared with the derivation of the retarded po-

tentials — we do the spatial integrals first. This just has the effect of replacing r′ with rq(t
′):

Φ(r, t) =
q

4πǫ0

∫ δ
(

t′ − t +
|r−rq(t′)|

c

)

|r− rq(t′)|
dt′

The t′ integral is of the form

∫

h(t′)δ(f(t′)) dt′ =
h(t′)

|df/dt′|

∣

∣

∣

∣

f(t′)=0
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The derivative of the δ-function argument is

d

dt′

(

t′ − t +

√

(r− rq(t′)) · (r− rq(t′))

c

)

= 1 − (r− rq(t
′)) · v(t′)

c|r− rq(t′)|
.

and we must evaluate this at the retarded time t′ = t − |r−rq(t′)|
c .

Introducing the unit vector from the retarded position of the charge towards r

n(t′) = (r− rq(t
′))/|r− rq(t

′)| the potentials can be written

Φ(r, t) =
1

4πǫ0

q

|r− rq(t′)|(1 − v(t′) · n/c)

A(r, t) =
µ0

4π

qv(t′)

|r− rq(t′)|(1 − v(t′) · n/c)

This differs from our expectation by the (1−v ·n/c) factor, which we can understand in terms

of the time taken for the retarded Green function to sweep over the charge.

Feynman gives a very elegant form for the derived fields (Lectures I 28-2 and II 21-1 – 21-11).
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Dual Sets of Vectors

Consider three linearly independent but ortherwise arbitrary vectors which span a three-

dimesional space: u1, u2, u3. We can then write any other vector in terms of the u basis:

A = A1u1 + A2u2 + A3u3 = Aiui.

We now consider a dual basis d1, d2, d3, which is defined by ui · dj = δij .

Explicitly d1 = u2 ∧ u3/(u1 · u2 ∧ u3) and cyclically.

We can also write A in the d basis: A = A1d
1 + A2d

2 + A3d
3 = Aid

i.

(The A-component index is up in the u-vector basis, and down in the d-vector basis.)

A dot product between vectors expressed in the same basis is messy:

A ·B = Aiui · ujB
j = AigijB

j

but a dot product between a vectors expressed in the u-basis and the d-basis is easy:

A · B = Aiui · djBj = AiBi

The quantities gij = ui · uj are the components of the metric tensor.
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Under linear transformations other than rotations the ‘invariant tensor’ δij is either not a

tensor, or not invariant, since the condition for invariance

R I RT = I

specifically defines a rotation.

Both the invariant concept and the tensor are useful, and so both are used:

The Kronecker delta δij is defined to be the invariant (1 if i = j, 0 if i 6= j), and in

general is not a tensor.

The tensor, that is the quantity that transforms under more general transformations in a

way linked to the co-ordinate transformation, is called the metric tensor gij .

Consider the scalar quantity D2 = xigijx
j = xT gx = (x1 x2 x3 )





1 0 0
0 1 0
0 0 1









x1

x2

x3





where xi are Cartesian co-ordinates. Clearly this represents the distance-squared from the

origin to the point with co-ordinates (x1, x2, x3), and similarly (xi − yi)gij(x
j − yj) is the

distance-squared between the points with co-ordinates (x1, x2, x3) and (y1, y2, y3).
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The metric tensor allows co-ordinate separations to be converted to distances, and it coin-

cides with δij only in Cartesian co-ordinates. (In general co-ordinate systems gij will vary

from place to place, and it defines distances only between infinitesimally close points. By

restricting the co-ordinate transformations to be linear we avoid these complications, as gij

does not depend on position.)

Define a linear and invertible transformation of co-ordinates:

(x′)i = Li
jx

j or x′ = L x x = L−1 x′

Any set of three quantities that transform in the same way as the co-ordinates (x′)i = Li
jx

j,

are defined to be the components of a contravariant vector, and are written with superscripts.

The basis vectors for these components are obviously the unit co-ordinate displacement vec-

tors, such as from (0, 0, 0) to (1, 0, 0).

(Note that upper and lower indices balance on the two sides of the equation, and that con-

traction occurs between upper and lower indices.)
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But distance is a physical quantity not depending on the co-ordinate system. This allows us

to deduce the transformation law for the metric tensor: (compare the discussion of σσσ, p.15)

D2 = xT gx = (x′)Tg′x′ = xT LT g′Lx

and hence

g = LT g′L or g′ = (L−1)T gL−1

which is what you would expect for a tensor except L → (L−1)T .

Any set of three quantities that transform as f ′
i = (L−1)j

ifj are defined to be the compo-

nents of a covariant vector, and are written with subscripts.

Tensors of higher rank transform in the same way for each index.

Note that for rotations (R−1)T = R and so the distinction does not apply.

Some vectors are naturally contravariant, like the co-ordinates.

The metric tensor, as we have seen, is naturally covariant.

So is the gradient of a scalar field Φ (compare the discussion of transformation of ρ p. 19):

G′
i =

∂Φ

∂(x′)i
=

∂xj

∂(x′)i

∂Φ

∂xj
= (L−1)j

iGj .

The basis vectors for Gi are vectors orthogonal to surfaces of constant xi.
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Invariants

An invariant is formed by contracting (i.e. setting equal and summing over) a covariant and

a contravariant index: consider the change in a scalar function Φ over a small displacement

δxi:

δΦ =
∂Φ

∂xi
δxi = Gi δxi = invariant

Since δx transforms with L and G with (L−1)T the invariance of GT δx is obvious.

The distance-squared function D2 provides another example of an invariant formed by con-

traction in this way.

A few minor points:

It is this requirement to contract upper and lower indices that implies that L should be

written with one upper and one lower index.

The use of vector and matrix notation, as above, is strictly ambiguous because it does

not indicate the covariant or contravariant nature of the index. The only safe notation is

index notation.

The words covariant and contravariant are hallowed by usage but don’t really imply any-

thing. In particular, there is no real connection with the other use of covariant.
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An Two-Dimensional Example: Oblique Co-ordinates

(

x′
1

x′
2

)

=

(

α γ
0 β

)(

x1

x2

)

where:

α = 1.2

β = 0.9

γ = 0.1

so

L =

(

α γ
0 β

)

and

L−1 =

(

1/α −γ/αβ
0 1/β

)

Black lines: constant xi.

Red lines: constant x′
i.

Note that the point with (x1, x2) = (10, 10) has (x′
1, x

′
2) = (13, 9).
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Spacetime Metric

Under a Lorentz Transformation the interval between two events s is invariant where

s2 = c2∆t2 − ∆x2 − ∆y2 − ∆z2

and we can use this to make the mathematics of Lorentz transformations look very like three-

dimensional linear transformations.

We define the spacetime position four-vector

x = xµ =







x0

x1

x2

x3






=







ct
x
y
z






(Greek indices run 0 → 3, Latin run 1 → 3).

We define the group of Lorentz transformations Λ as the set of linear transformations on the

xµ that leave invariant the quadratic form

s2 = xµgµνxν = (x′)µg′
µν(x′)ν where (x′)µ′

= Λµ′

µxµ and g′
µν = gµν

which implies that the defining property of Λ is (compare the discussion of metric tensor

transformation, p. 38):

Λµ′

µgµ′ν′Λν′

ν = gµν or ΛT gΛ = g or gΛg−1 =
(

Λ−1
)T
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Spacetime Metric

gµν is called the spacetime metric or metric tensor.

g = gµν =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







(Note that we could have written s2 with the other sign, which would change the sign of g.)

We can now define vectors and tensors just as for general linear transformations:

A contravariant four-vector V or V µ transforms in the same way as xµ;

A contravariant second-rank tensor T or Tµν has 16 components and transforms as

Tµ′ν′

= Λµ′

µΛν′

νTµν ;

The metric tensor is a covariant tensor, and the defining equation for Λ ensures that it is

an invariant tensor;

The metric tensor can be used to lower indices: gµνxν = xµ where xµ are the covariant

elements of x, (ct,−x). (The inverse gµν can be used to raise indices — note it is numer-

ically identical.)

The gradient ∂/∂xµ is naturally covariant, as indicated by the notation ∂µ = ∂/∂xµ
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Space-like and Time-like Intervals

Although we have written the invariant squared interval as s2, s2 is not positive-definite, be-

cause the metric is indefinite. In fact there are three possibilities:

s2 > 0: Time-like interval, when c2∆t2 > ∆x2 + ∆y2 + ∆z2; there is a reference frame in which

events occur in same place with time separation τ = s/c (the proper time);

s2 < 0: Space-like interval, when c2∆t2 < ∆x2 + ∆y2 + ∆z2; there is a reference frame in which

events occur at same time with spatial separation l =
√
−s2 (the proper length);

s2 = 0: Light-like interval, when c2∆t2 = ∆x2 + ∆y2 + ∆z2; the events can be connected by a

light wave; there is no special reference frame.

Classes of Lorentz Transformations

Another consequence of the indefinite metric is that we cannot use just the determinant det Λ

to classify Lorentz transformations; we need also the sign of Λ0
0:

det Λ = 1 and Λ0
0 > 0 defines a proper orthchronous Lorentz transformation;

The other three classes have spatial inversion, time reversal or both.
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Examples of Lorentz transformations

The standard Lorentz transformation from a reference S to a reference frame S′ moving with

speed v along the x-axis is

Λ =







γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1







where

β =
v

c
and γ =

1
√

1 − β2

and this satisfies ΛT gΛ = g as required.

Similarly, if S′ moves along the z-axis:

Λ =







γ 0 0 −γβ
0 1 0 0
0 0 1 0

−γβ 0 0 γ






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Four-Velocity and Four-Momentum

Consider the world-line of a particle in spacetime, and nearby events on the world-line with

co-ordinate separations dxµ;

a) The velocity is
v

c
=

(

dx1

dx0
,

dx2

dx0
,

dx3

dx0

)

and v < c

b) The separation ds2 = dxµdxµ is invariant

c) It follows from a) that the interval between nearby events is time-like, ds2 = c2 dτ2;

d) By summing the intervals between events we can define an invariant proper time τ for

any point on the world-line relative to a chosen event on the world-line as origin;

e) There is thus a covariant desciption of the trajectory xµ(τ);

f) The four-velocity is defined as the derivative with respect to τ :

uµ =
dxµ

dτ
= (γc, γv)

and uµ is a four-vector. (Consider the limiting process in the definition of the derivative:

dxµ/dτ = four-vector/invariant.) uµuµ = u · u = c2.

g) The four-momentum is defined by pµ = muµ = (E/c, p), p · p = m2c2 where m is

rest-mass.
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Density and Flux

The density and flux of an invariant quantity, like a number, form a four-vector, such as the

number density n and flux f of molecules in a gas (nc, f):

Consider a reference frame in which the flux is zero and the number density is n0:

fµ = (n0c, 0).

Consider a reference frame moving with velocity v; the number density increases by a factor

of γ because of the Lorentz contraction in the direction of v, n = γn0, whereas the flux is

now the rate at which the number density crosses unit area, f = −nv = −γn0v.

In this reference frame the components are thus (γn0c, −γn0v); but this is just the Lorentz

transform of the rest frame fµ. Thus fµ is a four-vector.

By a similar argument, the density and flux of a four-vector form a second-rank tensor.
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Charge and Current Four-vector

Charge is a Lorentz invariant (see Jackson §11.9 for experimental references). Thus charge

density and current density will form a four-vector:

j
µ = (cρ, J).

We can write the equation of continuity as

∂ρ

∂t
+ ∇ · J =

∂cρ

∂x0
+

∂j1

∂x1
+

∂j2

∂x2
+

∂j3

∂x3
= 0

which gives an explicitly covariant expression of the conservation of charge:

∂µjµ = 0.

d’Alembertian

The four-dimensional version of the Laplacian is named after a different Frenchman:

1

c2

∂2

∂t2
−∇2 = gµν∂µ∂ν = ∂µ∂µ where ∂µ = gµν ∂

∂xν
=

(

1

c

∂

∂t
,−∇

)

The second form makes it clear that this is invariant under a Lorentz transformation.

CWPP 22/2/2010



S8: Covariant Electromagnetism LORENTZ TRANSFORMATION 49

Potential Four-vector

In the Lorenz gauge, the elements of the current four-vector are the sources in the wave equa-

tions for the potentials:

∂µ∂µΦ =
ρc

ǫ0c
∂µ∂µA = µ0J.

If we divide the first by c (remember µ0ǫ0c
2 = 1) we obtain the manifestly covariant form

∂µ∂µAν = µ0j
ν

where the potential four-vector Aµ is given by Aµ =

(

Φ

c
, A

)

The Lorenz gauge condition can then be written covariantly: ∂µAµ = 0

which implies that this is a covariant condition.

Finally we can also write the gauge transformation covariantly: (A′)µ = Aµ − ∂µχ.
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Field Tensor

Knowing how the potentials transform we can deduce how the fields transform. Consider the

equation for E:

E = −∇Φ − ∂A

∂t
= −c

(

∂A0

∂xi
+

∂Ai

∂x0

)

= −c

(

∂Ai

∂x0
− ∂A0

∂xi

)

.

Each term looks like the 0i or i0 component of a tensor, which we can choose to write as up-

per index, lower index or mixed. Choose the upper index version and define

Fµν = ∂µAν − ∂νAµ and then F 0i = −Ei

c
.

The elements of F— contravariant: mixed:

Fµν =







0 −Ex/c −Ey/c −Ez/c
Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0






Fµ

ν = Fµλgλν =







0 Ex/c Ey/c Ez/c
Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0







(Note the occurrence of −B in the spatial part of F.) N.B. Field invariants.
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Covariant Maxwell’s Equations

The first Maxwell equation can be written

∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
=

ρ

ǫ0
→ ∂F 10

∂x1
+

∂F 20

∂x2
+

∂F 30

∂x3
=

j0

ǫ0c2

while the x-component of the fourth Maxwell equation is

∂Bz

∂y
− ∂By

∂z
− 1

c2

∂Ex

∂t
= µ0Jx → ∂2F

21 + ∂3F
31 + ∂0F

01 = µ0j
1

so we can write both equations as

∂µFµν = µ0j
ν

Obviously we can write this with other index choices, for example

∂µFµ
ν = µ0j

ν ∂µFµ
ν = µ0jν .
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Dual Tensor

The other two Maxwell equations can be written in terms of the dual tensor:

We define the altenating tensor in the same way as in three dimensions:

ǫµνλρ =

{

1 if µνρλ is a even permutation of 0123
−1 if µνρλ is an odd permutation of 0123
0 if any index is repeated

This is a pseudotensor: that is a tensor under proper Lorentz transformations with det Λ = 1,

and with the wrong sign under parity or time reversal.

We can use this to define a tensor dual to any antisymmetric tensor:

Gµν =
1

2
ǫµνλρFλρ.

which gives in the case of the field tensor

Gµν =







0 −Bx −By −Bz

Bx 0 Ez/c −Ey/c
By −Ez/c 0 Ex/c
Bz Ey/c −Ex/c 0







which is just Fµν with E/c replaced by B, B by −E/c — the duality transformation.
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Covariant Maxwell’s Equations (cont’d)

Using G, and our understanding of the duality transformation, we can write the other two

Maxwell equations as

∂µGµν = 0.

We can also get an explicit form in terms of Fµν by contracting with ǫµνλρ:

ǫµνλρ∂χGχρ = ǫµνλρ∂χǫχραβFαβ

which boils down to (see Landau and Lifshitz, p. 17 footnote):

∂µF νλ + ∂νFλµ + ∂λFµν = 0.

(This has 3 free indices, and so represents 64 equations, but only 4 of these are independent.)
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Covariant Lorentz Force

The Lorentz force on a charged particle is a four-vector, and depends on the particle velocity,

so the only obvious candidate is

qFµνuν or equivalently qFµ
νuν

and this is indeed correct. The spatial part is γq(E + v ∧ B) as expected, and the zeroth

component is γE · v
The equation of motion of a charged particle is thus

m
duµ

dτ
= qFµ

νuν .

The Lorentz force density is the rate of transfer of four-momentum per unit time per unit

volume, and is thus also a four vector:

fµ = Fµ
νjν .
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Motion of Charged Particle in Uniform Fields

One way to solve the equations of motion is to uncouple them. We can take the z-axis along

B, and E in the xz-plane. The elements of Fµ
ν are then

F = Fµ
ν =







0 Ex/c 0 Ez/c
Ex/c 0 B 0

0 −B 0 0
Ez/c 0 0 0







This is not symmetric (unless B = 0) but still has left eigenvectors cT F = λcT and right

eigenvectors Fd = λd. The usual argument for orthogonality of eigenvectors applies between

left and right eigenvectors: cT
mdn = δmn.

If we dot the equation of motion with cn we obtain

dcT
n u

dτ
= ωncT

n u where ωn =
qλn

m
.

Hence cT
n u = Un exp(ωnτ), and the initial condition is Un = cT

n u(0) so

u(τ) =
∑

n

(

cT
n u(0)

)

exp(ωnτ)dn.
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Conservation of Four-momentum

Knowing the rate of transfer of four-momentum to matter we can re-work the conservation

law. We first construct the correct right-hand side:

1

µ0
Fλ

ν∂µFµν = Fλ
νjν

[

=
1

µ0
Fλν∂µFµν on LHS.

]

(1)

We can complete the derivative from the other field equation. First contract it with Fµν :

Fµν

(

∂µFλν + ∂νFµλ + ∂λF νµ
)

= 0

The second term is equal to the first (first swap dummy µ ⇔ ν, then transpose both F):

Fµν∂νFµλ = Fνµ∂µF νλ = Fµν∂µFλν

whereas we can re-write the final term using D = FµνFµν :

2Fµν∂µFλν +
1

2
∂λ(FµνF νµ) = 2Fµν∂µFλν − 1

2
∂λD = 0. (2)

Adding equation (1) to 1/2µ0 × (2), collecting terms on right and lowering the µ index we

finally get

1

µ0
∂µ

(

gµρFρνF νλ +
1

4
gµλD

)

+ Fλ
νjν = 0
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Global Phase Invariance in Quantum Mechanics

It is well known that the overall phase of the wavefunction is arbitrary:

(i) If Ψ satisfies the Schrödinger equation then so does Ψ′ = eiαΨ because of the linearity of

the equation;

(ii) Ψ′ is still normalised;

(iii) All physical interpretation is unchanged — for example, the probability density ΨΨ⋆ and

the probability current

j =
−ih̄

2m
(Ψ⋆∇Ψ − Ψ∇Ψ⋆)

are unchanged;

(iv) Similarly if we make a measurement of an observable A, with eigenvalues An and

eigenfunctions φn, then the expansion coefficients

Ψ =
∑

cnφn → cn =

∫

φ⋆
nΨ d3x

acquire a phase eiα, but the probability of obtaining eigenvalue An is still |cn|2.

This is known as Global Phase Invariance.
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Newton’s laws of motion depend on the forces F, and we are used to thinking of these as in

some way primary, whereas the potential V from it which it is derived (F = −∇V ) is not.

The fact that we can alter the potential by a constant V ′ = V + V0 without altering F ‘con-

firms’ this viewpoint.

Similar considerations apply to gauge transformations of the EM potentials, which have often

been described as mathematical constructions as against the physical reality of the fields.

Ultimately quantum mechanics does not allow us to take this view.

It is the potential V that appears in Schrodinger’s equation:

1

2m
p2Ψ + V Ψ = ih̄

∂Ψ

∂t

(where p = −ih̄∇), or, for a charged particle q subject to a scalar potential Φ

1

2m
p2Ψ + qΦΨ = ih̄

∂Ψ

∂t
.
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Simple Gauge Transformation

Suppose Φ is time-independent; then we can solve by separation of variables:

Ψ =
∑

n

cnun exp(−iEnt/h̄) where
1

2m
p2un + qΦun = Enun.

If we now change Φ by a constant, Φ′ = Φ + V0 then the time-independent equation changes:

1

2m
p2u′

n + qΦ′u′
n = E′

nu′
n → 1

2m
p2u′

n + qΦu′
n = (E′

n − qV0)u
′
n.

Thus the eigenfunction has not changed: u′
n = un, but E′

n = En + qV0 and hence

Ψ′ =
∑

n

cnun exp(−iE′
nt/h̄) = exp(−iqV0t/h̄)Ψ.

The wavefunction has changed by a time-dependent global phase.

The interpretation is entirely classical: the energy has changed by the added energy qV0, but

the dynamics is unaltered. The gauge transformation has had no physical effect.
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Vector Potential in Quantum Mechanics

The Schrödinger equation for a charged particle q subject to EM potentials A and Φ is

1

2m
(p− qA)2Ψ + qΦΨ = ih̄

∂Ψ

∂t
or HΨ = ih̄

∂Ψ

∂t

where the Hamiltonian is H = 1
2mπππ2 + qΦ.

πππ = p − qA(r) is known as the kinetic momentum whereas p is the canonical momentum.

There is a classical argument that makes this Hamiltonian obvious, but we shall look at the

implied dynamics from a quantum perspective in order to make it appear plausible.

Lemma: Consider the rate of change of an expectation value 〈Q〉

〈Q〉 =

∫

Ψ⋆Q̂Ψ d3x → d〈Q〉
dt

=

∫

∂Ψ⋆

∂t
Q̂Ψ d3x +

∫

Ψ⋆Q̂
∂Ψ

∂t
d3x +

∫

Ψ⋆ ∂Q̂

∂t
Ψ d3x.

We can substitute from the Schrodinger equation for the Ψ-derivatives —
∂Ψ

∂t
=

1

ih̄
HΨ,

∂Ψ⋆

∂t
=

−1

ih̄
(HΨ)

⋆
— and then use the Hermitian property of H:

d〈Q〉
dt

=
1

ih̄

∫

Ψ⋆[Q̂, H]Ψ d3x + 〈∂Q̂

∂t
〉.
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We use this result repeatedly to find d〈x〉/dt and then d2〈x〉/dt2.

A few useful commutators:

[Q, P 2] = [Q, P ]P + P [Q, P ] [πππ, f(x)] = [p, f(x)]

[xj , πk] = [xj , pk] = ih̄δjk [p, f(x)] = −ih̄∇f

[πi, πj] = −q[pi, Aj(r)] − q[Ai(r), pj] = ih̄q

(

∂Aj

∂xi
− ∂Ai

∂xj

)

= ih̄qǫijkBk

We first find that
d〈x〉
dt

=
1

m
〈πππ〉. This gives the interpretation for the kinetic momentum: it

is just mv.

We can now apply the same procedure to
d〈πππ〉
dt

:

m
d2〈x〉
dt2

=
d〈πππ〉
dt

=
1

ih̄

(

1

2m
〈[πi, πj]πj〉 +

1

2m
〈πj [πi, πj]〉 + q〈[p, Φ]〉

)

− q〈∂A

∂t
〉

= q

(

〈E〉 +
1

2m
〈πππ ∧ B− B ∧ πππ〉

)

The last term is a Hermitian operator product: πiBj is not Hermitian, (πiBj + Bjπi)/2 is.

S8: Covariant Electromagnetism QM GAUGE INVARIANCE 62

How could this be covariant under a gauge transformation of A and Φ:

A′ = A + ∇χ Φ′ = Φ − ∂χ

∂t

The clue is given by the simple case above: χ(t) = −V0t → Ψ′ = Ψexp(−iqV0t/h̄).

This works because

(

ih̄
∂Ψ

∂t
− qΦ Ψ

)

is covariant under this gauge transformation: both

terms acquire extra pieces, which then cancel, so the whole expression just acquires e−iqV0t/h̄.

Considering instead an arbitrary gauge transformation we try

Ψ′ = Ψexp(iqχ/h̄)

and we find that

πππΨ = (p − qA)Ψ = −ih̄∇Ψ − qAΨ

is also covariant, each term acquiring an extra piece that cancels, and hence

1

2m

(

p − qA
)2

Ψ =
(

ih̄
∂Ψ

∂t
− qΦ Ψ

)

is covariant under gauge transformations of A, Φ and Ψ.
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Simple Consequences

The possibility of position-dependent gauge transformations breaks the link between the spa-

tial gradient of the wavefunction and the kinetic momentum mv of the particle — as we have

seen canonical momentum p = −ih̄∇ no longer has this interpretation.

However the probability density is still P = Ψ⋆Ψ.

Putting these together we find that the expression for the probability current has to change:

j 6= −ih̄

2m

(

Ψ⋆∇Ψ − Ψ∇Ψ⋆
)

=
1

2m

(

Ψ⋆pΨ − ΨpΨ⋆
)

=
1

2m

(

Ψ⋆pΨ + Ψ(pΨ)⋆
)

The obvious thing to try, since the correct j has to reduce to this when A = 0, is to replace p

with πππ:

j =
1

2m

(

Ψ⋆πππΨ + Ψ(πππΨ)⋆
)

=
1

2m

(

Ψ⋆pΨ − ΨpΨ⋆
)

− qA

m
Ψ⋆Ψ.

The first form shows that this is a gauge-invariant current, so we just have to show that it

satisfies the right conservation equation:

∇ · j +
∂P

∂t
= 0
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Conservation of Probability

∂P

∂t
=

1

ih̄

(

Ψ⋆ HΨ − Ψ(HΨ⋆)
)

=
1

i2mh̄

(

Ψ⋆ πππ2Ψ − Ψ(πππ2Ψ⋆)
)

whereas the other term is

∇·j =
−1

i2mh̄
p ·
(

Ψ⋆πππΨ+Ψ(πππΨ)⋆
)

=
−1

i2mh̄

(

Ψ⋆p ·πππΨ−(pΨ)⋆ ·πππΨ+(pΨ) ·(πππΨ)⋆−Ψ(p ·πππΨ)⋆
)

.

The ∇Ψ · ∇Ψ⋆ terms cancel to leave

∇ · j =
−1

i2mh̄

(

Ψ⋆p · πππΨ + Ψ(qA · pΨ)⋆ − Ψ⋆(qA · pΨ) − Ψ(p · πππΨ)⋆
)

.

Interchange second and third terms, and add and subtract Ψ⋆q2A2Ψ:

∇ · j =
−1

i2mh̄

(

Ψ⋆(p · πππΨ − qA · pΨ + q2A2Ψ) − Ψ(p · πππΨ − qA · pΨ + q2A2Ψ)⋆
)

which cancels the ∂P/∂t term.
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Alternative form for j

If we write the wavefunction Ψ in modulus-argument form, Ψ = R exp(iS/h̄) where R and S

are real, then we get an alternative form for the current. Note that

pΨ = −ih̄ (∇R) exp(iS/h̄) − ih̄ R(i∇S/h̄) exp(iS/h̄) =

(

−ih̄
∇R

R
+ ∇S

)

Ψ.

If we put this into the original (non-invariant) form for j we find

j =
1

2m

(

Ψ⋆pΨ + Ψ(pΨ)⋆
)

= P
∇S

m

which gives the usual interpretation of the wavefunction: the modulus tells us where the par-

ticle is (P = R2) and the gradient of the phase tells us where it is going (mv = ∇S).

The same argument with the gauge-invariant current gives

j =
1

2m

(

Ψ⋆pΨ − ΨpΨ⋆
)

− qA

m
Ψ⋆Ψ = P

(∇S − qA

m

)

which is obviously gauge invariant since the gauge transformation is just

S′ = S + qχ A′ = A + ∇χ.

and emphasizes that A changes the link between phase gradient and motion.
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Reversing the Argument

• There is a global phase invariance Ψ′ = eiαΨ

• We postulate a local phase invariance Ψ′ = exp(iqχ(r, t)/h̄)Ψ.

• This requires the existence of potentials A(r, t) which transform as A′ = A + ∇χ and

Φ′ = Φ − ∂χ/∂t which couple to the ‘charge’ q

• The potentials must appear with derivatives of Ψ in gauge-invariant combinations

(p − qA)Ψ and (Ê − qΦ)Ψ.

• This turns out to imply that the gauge-invariant current (multiplied by the charge q) is

the source for gauge-invariant fields derived from the potentials.

The starting point, turning a global symmetry into a local one, is not obvious.

Nonetheless this turns out to be an extraordinarily fruitful line of thought: everything is de-

termined by the symmetry group, in this case the one-dimensional unitary group U(1).

Not only does this work once, but three times!! — the Standard Model of particle physics

consists of three lots of gauge fields with three different symmetry groups, U(1), SU(2), and

SU(3) operating on different internal symmetries of the wavefunction.
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Atomic Hamiltonian for Interaction with Radiation

The simple Hamiltonian for hydrogen (infinite nuclear mass, no magnetic terms) is of the

above form:

H =
p2

2m
− e2

4πǫ0r
or q = −e A = 0 Φnuc =

e

4πǫ0r
.

Now consider the effect of a plane (and plane-polarised) EM wave:

A = A cos(k · r− ωt) → E = −ωA sin(k · r− ωt) B = −k ∧ A sin(k · r − ωt)

where k · A = 0, and we have chosen a gauge where Φ = 0.

But the atom is tiny compared with the wavelength: k · r ≪ 1 (Electric Dipole approxima-

tion). Thus we can approximate the potential as

A = A cos(ωt) → E = ωA sin(ωt) B = 0

and then the EM wave produces extra terms in the Hamiltonian

Hrad =
e

m
A · p +

e2

2m
A2 =

e

m
A · p cos(ωt) +

e2

2m
A2 cos2(ωt)
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But we could represent this wave with a different set of potentials.

If we do a gauge transformation with χ = −A · r cos(ωt) we obtain the same approximate

fields using the potentials

A′ = A + ∇χ = 0 Φ′ = −∂χ

∂t
= −ωA · r sin(ωt) = −E · r

With these potentials the interaction Hamiltonian takes the form

Hrad = qΦ′ = eE · r = −E ·D

where D is the electric dipole moment operator −er.

These alternative forms of Hrad (known as the velocity form and the length form) must lead

to identical consequences, since they are related by a gauge transformation.

This approach can be taken order by order in k · r. For example the next term

A = Ak · r sin(ωt) → B = k ∧ A sin(ωt) E = −ωAk · r cos(ωt)

can be transformed with χ = −(1/2)A · r k · r sin(ωt) to

A′ =
1

2
B ∧ r Φ′ =

1

6
(3rirj)

(

∂Ei

∂rj

)

which splits the term into Magnetic Dipole and Electric Quadrupole Hamiltonians.
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It appears that the occurrence of potentials in the Schrödinger equation is consistent with a

view of them as mathematical constructs: for example, a gauge transformation of potentials

and wavefunction phase leaves the physical interpretation unaltered. It seems that only the

fields produce observable effects.

But the phase of Ψ, like the phase of light beams, can have an effect when interference can

occur between two beams.

This leads us to consider two-beam interference between particle waves. (This experiment has

been done with many kinds of ‘particles’, including quite large molecules.)

At the exit point of the interferometer we have a superposition of two beams:

Ψ1 = A1 exp[(P1 · x − Et)/h̄] Ψ2 = A2 exp[(P2 · x − Et)/h̄]

(Pi are eigenvalues of p, Ai are complex amplitudes) which will produce a pattern of

constructive or destructive interference depending on the relative phase of the two beams

(through the Ai) and their co-alignment (through the Pi).
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First Question: Can we shift the pattern with a gauge transformation?

This would completely destroy our view of gauge transformations, that they induce a change

between different equivalent descriptions of the same physical situation.

Make the particles charged, and do a gauge transformation with χ(r, t).

Each beam coming into the final beam combiner acquires an arbitrary phase shift qχ(r, t)/h̄,

but when they are superposed at the same point they are both phase-shifted by the same

amount — hence no change in the interference.

We conclude that there are no mysteries hidden in the gauge transformation process.

Second Question: Can we shift the pattern with a vector potential that produces no fields

where the beams are?

This would challenge our view of the potentials as just constructs, and it tuns out the answer

is YES!!.
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Infinite solenoid

This is a useful model system with the right properties: an infinite solenoid with radius a

and circulating current per unit length j, along the z-axis. The vector potential is (ρ is the

cylindrical polar radial co-ordinate, ρ2 = x2 + y2)

A(r) =











µ0j

2
k ∧ r for ρ < a

µ0ja
2

2ρ2
k ∧ r for ρ > a.

This potential generates magnetic field inside the solenoid:

B = ∇∧A = µ0jk

But in the exterior region B = 0. However the potential cannot be zero in this region since

∮

A · dl =

∫

(∇∧ A) · dS = (Flux of B)

and this is equal to πa2µ0j 6= 0.
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An alternative form for the exterior potential is A = (µ0ja
2/2ρ)φ̂φφ.

This is locally, but not globally, removable with a gauge transformation with

χ = −(µ0ja
2/2)φ. It is topologically impossible to remove A everywhere in this way.

Another way of writing this is χ(r) = −
∫

r

r0

A · dl which is well-defined in a simply-connected

region which does not enclose the solenoid. This χ sets A to zero within this region, but

there must be compensating changes in χ elsewhere, since χ is continuous and differentiable.

We can now complete the thought experiment by setting an infinite solenoid in the middle of

the interferometer. We can set the vector potential to zero along either path, but not both,

with a gauge transformation. Hence the the wavefunctions in the two gauges are related by

Ψ
(0)
k = Ψk exp(iqχk/h̄)

where χk is the above χ taken along a path appropriate for the k’th beam, and Ψ
(0)
k denotes

the output beam when A = 0.

Finally we see that when the solenoid carries current, the A field introduces a non-trivial but

gauge-independent phase shift between the two beams

q(χ2 − χ1)

h̄
=

q

h̄

∮

A · dl =
q

h̄
Flux of B.
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