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Harmonic Oscillator

Discuss briefly why a harmonic oscillator (in one dimension) has the Hamiltonian

H =
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2m
+

1

2
mω2x2

in terms of the classical angular fequency ω. We shall derive the eigenvalues of the harmonic
oscillator as follows.

(i) Show that
[p, x] = −ih̄

The operators a and a† are defined by

a =

√(
1

2mωh̄

)
(mωx+ ip) a† =

√(
1

2mωh̄

)
(mωx− ip)

Note that these are not Hermitian operators (why not?), but are an adjoint pair, which
explains the symbols given to them. Find x and p in terms of these operators. We need not
do any more differentiating but only algebra, using the commutator above. (Experience
shows that students often do not understand this statement, thereby making a lot of work

for themselves!) Show that the operators satisfy the commutation relation [a, a†] = 1.

(ii) Show that the harmonic oscillator Hamiltonian is given by H = (h̄ω/2)(aa†+a†a) and,

using the [a, a†] commutator, that H can also be written H = h̄ω(a†a+ 1
2 ) = h̄ω(aa†− 1

2 ).

(iii) Suppose that there exists an eigenket of the time-independent Schrodinger equation
with energy E:

H|ψ〉 = E|ψ〉.

Show that a†|ψ〉 and a|ψ〉 are also eigenkets, with energies E + h̄ω and E − h̄ω . (Hint:
try operating on these kets with H and see what you can do with the product using the
commutation relations, or the different forms of H.) Note that all these eigenkets are
time-independent, and thus solutions of the time-independent Schrodinger equation, not
the time-dependent Schrodinger equation.

(iv) Show that all eigenvalues of H are positive. This is not because energy is positive! It
isn’t. Negative energy is just less than zero energy, and we can change our definition of
which state has zero energy (at least non-relativistically). What is the zero energy state
for this problem? Hence show there must be a state of least energy, the ground state, for
which

a|0〉 = 0.

By operating with a† deduce that E0 = 1
2 h̄ω, and hence that the eigenkets are |n〉 ∝

(a†)n|0〉, with energy En = (n+ 1
2 )h̄ω .

(v) [Harder] The eigenvalues of a quantum-mechanical problem depend not only on the
Hamiltonian, but also on the boundary conditions. What particular assumptions have we
(implicitly) made about boundary conditions in the above derivation?

(vi) The reason for the proportional sign above is that if we assume all the |n〉 are nor-

malised, 〈n|n〉 = 1, then we can’t assume that operating with a† preseves the normalisation.
Thus we can write

a|n〉 = f |n− 1〉 and a†|n〉 = g|n+ 1〉



for some, possibly complex, constants f and g. Deduce that |f | =
√
n, and similarly that

|g| =
√
n+ 1. Why can we choose f and g to be real? The constants fand g are just

matrix elements: f = 〈n− 1|a|n〉. Illustrate the form of the a and a† matrices.

(vii) Deduce the form of the x and p matrices. Can you work out what the x2 and p2

matrices look like?

(viii) The classical solution for the harmonic oscillator is x = A sinωt. Deduce the classical
p(t) and E in terms of A. Consider the superposition state

|ψ(t)〉 =
1√
2

(
exp(−iω−t)|n− 1〉+ exp(−iω+t)|n〉

)
.

What must ω− and ω+ be for this state to satisfy the TDSE? Find 〈E〉, 〈x(t)〉 and 〈p(t)〉.
(Can you work out how to do this with matrices? It will save a lot of thinking!) Compare
with the classical results. (You could consider quite a range of comparisons: x(t); p(t); the
relationship between x and p; x and E; p and E; E, x2 and p2 for example.)

(ix) You should have found a major discrepancy between the amplitude and the energy
above. Consider a much larger superposition, of 2N+1 states from n−N to n+N . In the
limit of large N and even larger n you should find a more classical picture emerging. You
could also look at 〈x2〉 and 〈p2〉 for these two states for a further insight into the reason
for the discrepancy in the state |ψ〉. (Matrix method is the only rational approach here.
It’s OK to use an equal superposition with coefficients 1/

√
2N + 1, and it’s helpful to look

at n so large compared with N that n − N ≈ n for all practical purposes, e.g. n = 1030

and N = 1015.)


