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Further Quantum Mechanics TT 2013

Problems 3 (weeks 3–4)

Exchange Symmetry

3.1 Show that when the state of a pair of photons is expanded as

|ψ〉 =
∑
nn′

bnn′ |n〉|n′〉, (3.1)

where {|n〉} is a complete set of single-photon states, the expansion coefficients satisfy bnn′ = bn′n.

3.2 Explain the physical content of writing the wavefunction of a pair of electrons in the form

〈x,x′|ψ〉 =


ψ++(x,x′)
ψ−+(x,x′)
ψ+−(x,x′)
ψ−−(x,x′)

 . (3.2)

Which of these functions vanishes when the pair is a spin singlet? What relation holds between
the non-zero functions? Suppose |ψ〉 for a spin singlet can be expanded in terms of products of the
single-particle states |u,±〉 and |v,±〉 in which the individual electrons are in the states associated
with spatial amplitudes u(x) and v(x) with Sz returning ± 1

2 . Show that

|ψ〉 = 1
2 (|u,−〉|v,+〉 − |v,+〉|u,−〉 − |u,+〉|v,−〉+ |v,−〉|u,+〉)

and explain why this expansion is consistent with exchange symmetry.
Given the four single-particle states |u,±〉 and |v,±〉, how many linearly independent entangled

states of a pair of particles can be constructed if the particles are not identical? How many linearly
independent states are possible if the particles are identical fermions? Why are only four of these
states accounted for by the states in first excited level of helium?

3.3 In Chapter 6 we saw that when a state of a composite system has a non-trivial expansion
|ψ〉 =

∑
ij cij |A; i〉|B; j〉 in terms of products of states |A; i〉 and |B; j〉 of the individual systems

it does not automatically follow that the systems are entangled. By recalling the property that
the matrix cij will have if the systems are not entangled, show that any two electrons are always
entangled.

Helium

3.4 Show that the exchange integral∫
d3x d3x′

Ψ∗1(x)Ψ2(x)Ψ∗2(x′)Ψ1(x′)

|x− x′|
is real for any single-particle wavefunctions Ψ1 and Ψ2.

3.5 The H− ion consists of two electrons bound to a proton. Estimate its ground-state energy by
adapting the calculation of helium’s ground-state energy that uses the variational principle. Show
that using single-particle wavefunctions u(x) ∝ e− r/a the expectation of the Hamiltonian is

〈H〉a = R(2x2 − 11
4 x) where x ≡ a0

a
. (3.3)

Hence find that the binding energy of H− is ∼ 0.945R. Will H− be a stable ion?
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3.6∗ In terms of the position vectors xα, x1 and x2 of the alpha particle and two electrons, the
centre of mass and relative coordinates of a helium atom are

X ≡ mαxα +me(x1 + x2)

mt
, r1 ≡ x1 −X, r2 ≡ x1 −X, (3.4)

where mt ≡ mα + 2me. Write the atom’s potential-energy operator in terms of the ri.
Show that

∂

∂X
=

∂

∂xα
+

∂

∂x1
+

∂

∂x2

∂

∂r1
=

∂

∂x1
− me

mα

∂

∂xα

∂

∂r2
=

∂

∂x2
− me

mα

∂

∂xα

(3.5)

and hence that the kinetic-energy operator of the helium atom can be written

K = − h̄2

2mt

∂2

∂X2
− h̄2

2µ

(
∂2

∂r21
+

∂2

∂r22

)
− h̄2

2mt

(
∂

∂x1
− ∂

∂x2

)2

, (3.6)

where µ ≡ me(1 + 2me/mα). What is the physical interpretation of the third term on the right?
Explain why it is reasonable to neglect this term.

Adiabatic Principle

3.7 We have derived approximate expressions for the change in the energies of stationary states
when an electric or magnetic field is applied. Discuss whether the derivation of these results implicitly
assumed the validity of the adiabatic principle.

3.8 Explain why E/ω is an adiabatic invariant of a simple harmonic oscillator, where ω is the
oscillator’s angular frequency. Einstein proved this result in classical physics when he was developing
the “old quantum theory”, which involved quantising adiabatic invariants such as E/ω and angular
momentum. Derive the result for a classical oscillator by adapting the derivation of the wkbj
approximation to the oscillator’s equation of motion ẍ = −ω2x.

3.9 Suppose the charge carried by a proton gradually decayed from its current value, e, being at
a general time fe. Write down an expression for the binding energy of a hydrogen atom in terms of
f . As α→ 0 the binding energy vanishes. Explain physically where the energy required to free the
electron has come from.

When the spring constant of an oscillator is adiabatically weakened by a factor f4, the oscillator’s
energy reduces by a factor f2. Where has the energy gone?

In Problems 3.14 and 3.15 we considered an oscillator in its ground state when the spring
constant was suddenly weakened by a factor f = 1/16. We found that the energy decreased from
1
2 h̄ω to 0.2656h̄ω not to h̄ω/512. Explain physically the difference between the sudden and adiabatic
cases.

3.10 Photons are trapped inside a cavity that has perfectly reflecting walls which slowly recede,
increasing the cavity’s volume V. Give a physical motivation for the assumption that each photon’s
frequency ν ∝ V−1/3. Using this assumption, show that the energy density of photons u ∝ V−4/3
and hence determine the scaling with V of the pressure exerted by the photons on the container’s
walls.

Black-body radiation comprises an infinite set of thermally excited harmonic oscillators – each
normal mode of a large cavity corresponds to a new oscillator. Initially the cavity is filled with
black-body radiation of temperature T0. Show that as the cavity expands, the radiation continues
to be black-body radiation although its temperature falls as V−1/3. Hint: use equation (6.125).


