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Further Quantum Mechanics
Christopher Palmer

2012 Problem Set

There are three problem sets, suitable for use at the end of Hilary Term, beginning of Trinity Term
and Week 3 or 4 of Trinity Term. The problems are labelled according their difficulty. So some
of the problems have a double dagger †† to indicate that they are a bit more challenging. Some
of the problems have a single dagger †. They are straightforward extensions and applications of
material in the lectures. Finally there are problems with no daggers; these are closely based on
problems we’ve done in the lectures.

1 Perturbation theory

(1) Derivation. Derive the expressions for the first-order (E
(1)
n ) and second-order (E

(1)
n ) changes

in the energy of a non-degenerate level |n0〉 with unperturbed eigenvalue E
(1)
n , induced by a

perturbation H1, so that the total Hamiltonian is H0 +H1. Calculate the first-order change
in the wavefunction |n1〉. Under what conditions would you expect perturbation theory to
be reliable for this level?

(2) SHO with x2 perturbation. A particle of mass m is in a harmonic oscillator potential
V0 = (1/2)mω2x2. A perturbation is introduced which changes the potential to V = V0 + V1

with V1 = (1/2)λmω2x2 where λ is small, λ� 1. The perturbation is thus H1 = V1.

(a) Write H1 in terms of the operators a =
√

1
2h̄mω (mωx+ ip) and a† =

√
1

2h̄mω (mωx− ip) .

(b) Use perturbation theory to compute the first order change E
(1)
0 in the ground state energy.

Can you extend your calculation to an arbitrary level |n〉?
(c) Part (b) just used the aa†+a†a part of H1. Can you work out how the aa+a†a† part gives

the second order perturbation? In effect it tells us which states give non-zero contributions in
the otherwise infinite sum. Show that the second order shift to the ground state is −λ2h̄ω/16.

(d) Of course the problem with the full potential V is exactly solvable because it’s just a SHO
with a shifted frequency ω′! So write down the exact expression for the energy eigenvalues.
Now expand it in powers of λ and check all the results you obtained in earlier parts.

(e) †Having worked out which states contribute it’s now pretty trivial to find the correction
to the ket. Find the first-order correction |01〉 to the ground state ket |00〉. Use the ex-
act result, this time in the x-representation, to check your answer. For any ω, 〈x|0〉 =
(mω/πh̄)1/4 exp (−mωx2/2h̄) and 〈x|2〉 =

√
2[(mωx2/h̄)− 1/2]〈x|00〉. Substitute the expan-

sion of ω′ to first order, and expand consistently to first order in λ to find 〈x| 00〉+ 〈x| 01〉.

(3) Particle in box with non-flat bottom. Consider the one-dimensional box, or infinite
square well, of width a, with sides at x = 0 and x = a. The unperturbed problem is

well-known: the eigenvalues are E
(0)
n = n2h̄2π2/2ma2 = n2E

(0)
1 , and the eigenfunctions are

〈x|n0〉 = un(x) =
√

2/a sin(nπx/a).

(a) We now add a perturbation

H1 = W cos(πx/a).

Sketch the perturbed potential well as a function of x. Show that all the first-order energy
shifts are zero. Is there a simple explanation for this?
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(b) Find the first order correction to the ground state wavefunction. Sketch the ground state
wavefunction and the correction, showing that the particle is more localised around the
minimum of the potential.

(c) Discuss the constraints onW for perturbation theory to be a suitable approximation method.

(d) Can you see how to evaluate the second-order shift E
(2)
n for n = 1 and n = 2?

You will find the evaluation of the integrals much simplified if you start by proving for the
perturbation a relationship of the form

H1un = α
(
un−1 + un+1

)
.

This relationship turns the integrals into orthogonality integrals. You will need to think
about the meaning of this equation for n = 1 since n−1 is then zero, while un is only defined
for n > 0.

(4) SHO with linear perturbation. A particle of charge q and mass m is in a harmonic
oscillator potential V0 = (1/2)mω2x2. A weak external electric field of magnitude f is
applied along the x direction. This gives an electrostatic potential −fx and potential energy
V1 = −qfx. Treating this as a small perturbation, calculate the shift in energy of all the
states, as follows.

(a) Write down the energy shift to be calculated, E
(1)
n , in the form of a matrix element by

quoting the standard result of first-order perturbation theory. (Call the energy eigenstates
of the unperturbed Hamiltonian |n0〉 as usual.)

(b) Deduce that the first order shift is zero for every n. This is an easy calculation using the
properties of raising and lowering operators. Is there an even simpler argument?

(c) We will next work out the first order change in the wavefunctions (this will turn out to be
non-zero). First write down the standard result, derived in question 1, involving a sum of
matrix elements divided by energy differences. How many terms contribute to the sum?

(d) Hence show that the first order correction to the state is

|n1〉 =
qf√

2mh̄ω3

(
(n+ 1)1/2 |(n+ 1)0〉 − n1/2 |(n− 1)0〉

)
.

Does this formula give the correct result when n = 0?

(e) Write down the formula for the 2nd order energy shift, and use the result of part (d) to

show it is E
(2)
n = −q2f2/2mω2.

(f) †This is a nice test of perturbation theory, because the problem can be solved exactly by a
simple insight. To get the general idea, plot a graph of V0(x) and also of V0(x) +V1(x). (For
the purpose of this graph alone, choose m = ω = q = f = 1). The point is, the new potential
energy is still exactly a quadratic, it is merely shifted over and down a bit. Therefore write
V0(x) + V1(x) = A(x − x0)2 + B and find A and B. Use this to deduce the exact energy
eigenvalues for this problem, and hence confirm your answers from parts (b) and (f).

(5) ††WKB Approximation and interpretation of the perturbed wavefunction. This
question introduces the WKB approximation, a completely different approach to obtaining
approximate wavefunctions, based on the de Broglie relation p = h̄k. Here k is the rate of
change of phase with distance:

φ =

∫ x

0

k dx =

∫ x

0

p

h̄
dx.

The momentum is given by p2/2m = E − V so k is given by

k =

√
2m(En − V (x))

h̄2 .
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For a 1-dimensional bound state problem we must have both forward eikx and backward e−ikx

waves, so with a boundary condition of un(0) = 0, like the particle in a box, the wavefunction
must look something like

un(x) ∝ sinφ.

An even better approximation is to adjust the amplitude of the wavefunction so that it is
smaller where the particle moves faster (think about traffic on a road when you enter or
leave a speed limit!). We need probability density ∝ 1/velocity, and hence wavefunction
∝ 1/

√
velocity:

un(x) ∝ 1√
k

sinφ.

This is a very good approximation to the exact wavefunction where the wavelength is small
compared to the distance over which the potential changes: that is at large n. We shall use
it to look at the box with a non-flat bottom of question (3).

(a) We now look at the WKB solution when we can treat V perturbatively, so that we treat the
whole of V inside the box to first order. We will assume that En = n2E1 is unchanged —
the method can be used to deduce this, but we have already proved it to first order, which
is good enough. Then we can write our WKB wavefunction as

un(x) =

√
2k0

ak
sinφ where k0 =

√
2mEn

h̄2 =
nπ

a
.

Show that to first order k ≈ k0

[
1− W cos (πx/a)

2n2E1

]
and

φ ≈ k0x−
W

2nE1
sin (πx/a).

(b) By expanding consistently to first order in W show that

un(x) ≈
√

2

a
sin (k0x)

(
1 +

W cos (πx/a)

4n2E1

)
−
√

2

a
cos (k0x)

W sin (πx/a)

2nE1
.

Here the first correction term changes the amplitude of the existing wavefunction, and the
second term corrects its phase, making the wavelength longer where the particle moves slower.

(c) Show that the first order correction to the wavefunction in perturbation theory is

|n1〉 =
W

2(2n− 1)E1
|(n− 1)0〉 −

W

2(2n+ 1)E1
|(n+ 1)0〉 .

Compare this with the WKB wavefunction correction. You should find agreement when n is
sufficiently large that we can neglect 1 in comparison with 4n2.
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2 Degenerate and Time Dependent Perturbation Theory

(1) Degenerate Perturbation Theory: 2-Dimensional Harmonic Oscillator The two-
dimensional HO has Hamiltonian

H =
1

2m
(p2
x + p2

y) +
1

2
mω2(x2 + y2) = Hx +Hy

so that it is the sum of two one-dimensional SHO.

(a) Show that [H,Hx] = 0. Hence we can choose eigenstates of H to be eigenstates of Hx as
well. (And hence Hy — explain.) The normalized wavefunctions for the ground state and 1st

excited state of the one-dimensional SHO are φ0(x) = N0e
−αx2/2 and φ1(x) =

√
2αxφ0(x)

respectively . Let Φnm(x, y) = φn(x)φm(y).

(b) The angular momentum in the x-y plane is L = xpy − ypx. Show that [L,Hx] 6= 0, but
[L,H] = 0. What do you conclude about possible bases of eigenstates of H?

(c) Explain why the ground state wavefunction for the 2D SHO is Φ00(x, y) and the first excited
state is doubly degenerate with wavefunctions Φ10(x, y) and Φ01(x, y).

(d) A small perturbation H1 = λxy is now added to the Hamiltonian. Show that to 1st order
in λ the ground state energy does not change.

(e) Using degenerate perturbation theory show that the degeneracy of the 1st excited state is
lifted and that the wavefunctions of the two resulting states are (Φ01(x, y)± Φ10(x, y))/

√
2.

What are the corresponding energies?

(f) Show that [Hx, H1] 6= 0, and also [L,H1] 6= 0. So neither the Hx basis used here, nor
the angular momentum basis, will avoid the diagonalization. Consider the operation S of
reflection about the line x = y, so that Sx = yS and Sy = xS. Show that [S,H1] = 0.
Consider your eigenfunctions from part (e) in terms of behaviour under S.

Hydrogen-like kets and wavefunctions for the next three questions. Kets are labelled |n, l,m〉,

and and the wavefunctions are in terms of a =
h̄2

mZe2/4πε0
where Z = atomic number:

ψ1s = 〈r| 100〉 =
1√
πa3

e−r/a ψ2s = 〈r| 200〉 =
1√

8πa3

(
1− r

2a

)
e−r/2a

ψ2p0 = 〈r| 210〉 =
1√

32πa3

r

a
cos θe−r/2a

All the integrals involve the factorial integral∫ ∞
0

xne−kx dx =
n!

kn+1
.

(2) Linear Stark Effect in Hydrogen n = 2. The usual argument for the vanishing of the
Stark effect in first order is based on parity: [H0, P ] = 0 but {H1, P} = 0, where H0 is the
unperturbed atomic Hamiltonian and H1 is the interaction with the applied field H1 = eEz.
The argument fails when states of opposite parity are degenerate, as in all excited states in
Hydrogen. We shall consider the n = 2 states.

(a) Show that [Lz,H1] = 0. The states in n = 2 are |200〉, |210〉, |211〉, |21− 1〉. Argue that
the only states we need consider are |200〉 and |210〉. We therefore have a 2 × 2 matrix to
evaluate. Argue that the diagonal elements are zero (remember Parity). The off-diagonal
elements are complex conjugates of each other. Hence we have just one integral to evaluate.
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(b) Show that the perturbation matrix is(
0 −3eEa0

−3eEa0 0

)
.

Hence find the linear Stark shifts in n = 2, and the eigenstates for each level.

In fact there are small energy shifts between the s and p levels in n = 2 caused by effects we
have not studied yet, but this treatment is still valid in the limit of large electric fields such
that this extra splitting is small compared with the Stark effect.

(3) Quadratic Stark effect in Hydrogen n = 1. As discussed in the lecture the second-order
Stark effect in the ground state of hydrogen is given by

E
(
12) =

∑
n′`′ 6=10

| 〈n′`′0| eEz |100〉 |2

E
(0)
1 − E(0)

n

The restriction to m = 0 follows from the Lz commutator in the previous question. In fact
only ` = 1 states contribute.

(a) Calculate the energy denominator for the first three terms in the sum. In addition to the
denominator getting bigger, the numerator gets smaller as the excited state wavefunction
looks less like the ground state.

(b) Obviously we can find a lower bound on the right answer by calculating just the first, n = 2
term. Do so.

(c) ††The full second-order result can be found by solving the equation for the first-order per-
turbation |(100)1〉 directly as an inhomogeneous differential equation. The result of this
is

|(100)1〉 = −4πε0Ea
e

[r + (r2/2a)] cos θ |100〉 .

Show that the full result for the second-order energy is − 9
4E

2 (4πε0a
3) and compare with the

lower bound found in part (b).

(4) Sudden approximation In the β decay H3 (1 proton + 2 neutrons in the nucleus)→ (He3)+

(2 protons + 1 neutron in the nucleus), the emitted electron has a kinetic energy of 16 keV.
We will consider the effects on the motion of the atomic electron, i.e. the one orbiting the
nucleus, which we assume is initially in the ground state of H3.

(a) Show by a brief justification that the perturbation is sudden, by considering the location of
the emitted electron at a time around τ = 5× 10−17 s after emission. How does τ compare
with the time-scale on which the wavefunction changes?

(b) Show that the probability for the electron to be left in the ground state of (He3)+ is
23(2/3)6 ' 0.7.

(5) Fermi Golden Rule.

(a) A particle of mass m is bound by a very short range attractive potential that can be modelled
as a delta-function: V (x) = −W δ(x) where W is a positive constant with dimensions energy
× length. Show that this system has a single bound state |0〉 with wavefunction

〈x| 0〉 =
1√
a

exp (−|x|/a) where a =
h̄2

mW
and eigenvalue E0 = −mW

2

2h̄2 .

In addition there are positive energy states of positive and negative parity |p,+〉 and |p,−〉
with energies E(p) = p2/2m and wavefunctions

〈x| p,+〉 =
1√
πh̄

cos

(
p(|x|+ φ)

h̄

)
〈x| p,−〉 =

1√
πh̄

sin (px/h̄)

where cotφ = h̄p/(mW ). These states have the usual continuum normalisation 〈p−| p′−〉 =
δ(p− p′). Taken together these form a complete set of states.
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(b) This system is initially in the ground state at t = 0, when it is perturbed by an odd-parity
perturbation V (x, t) = −Fxe−iωt. We can expand the system ket |ψ(t)〉 in terms of the
complete set of unperturbed states:

|ψ(t)〉 = a0(t)e−iE0t/h̄ |0〉+

∫ ∞
0

[b(p, t) |p,+〉+ c(p, t) |p,−〉] e−ip2t/2mh̄ dp

where b(p, t) and c(p, t) are the amplitudes for the positive and negative parity continuum

states: c(p, t)e−ip2t/2mh̄ = 〈p,−|ψ〉. Use the Schrodinger equation to derive equations of
motion for b(p, t) and c(p, t), and show that to first order in F the perturbation creates
non-zero amplitudes only in the negative-parity excited states.

(c) Hence show that to first order

c(p, t) = Fa

√
a

πh̄

4pa/h̄

[1 + (pa/h̄)2]2
exp[i (E(p)− Eo − h̄ω) t/h̄]− 1

E(p)− E0 − h̄ω
.

You can assume the integral∫ ∞
0

x exp(−x/a) exp(ipx/a) dx =
a2

[1− i(pa/h̄)]2

(d) Within this approximation the total excitation probability is

P (t) =

∫ ∞
0

|c(p, t)|2 dp

which cannot be evaluated in closed form. Change the variable of integration to q = (E(p)−
E0 − h̄ω)/2h̄ and justify the Fermi golden rule approximation at large times. Hence show

that when h̄ω = mW 2

h̄2 the only excited states are those around p = h̄/a, and

P (t) ≈ 2F 2h̄5t2

πm3W 4

∫ ∞
−∞

sin2 qt

q2t2
dq =

2F 2h̄5t

m3W 4
.

(6) A Gaussian kick. A harmonic oscillator starts in its ground state (n = 0) at t = −∞. A
perturbation H1 = −xF (t) is applied between t = −∞ and t = T .

(a) By considering the corresponding clasical interaction, explain why this represents the ap-
plication of a time-dependent force F (t) to the oscillator.

(b) Calculate the ket at time T correct to first order in the perturbation. Why does the first-
order correction only involve the state n = 1?

(c) Hence write down the expectation value of x at time T .

(d) †Compare this with the corresponding classical result for the application of a force F (t) to
an oscillator starting from rest:

x(t) =

∫ t

−∞
G(t− t′)F (t′) dt′ where G(t− t′) =

1

mω
sin[ω(t− t′)].

(The function G is known as the Green’s function for the problem.)

(e) In the case of a gaussian force F (t) = F0 exp (−t2/τ2) show that the probability the oscillator
makes a transition to the state n = 1 in the limit T →∞ is

P0→1 =
F 2

0 πτ
2

2mωh̄
e−ω

2τ2/2

(f) Plot the dependence of P0→1 on the timescale τ of the perturbation, and comment on the
behaviour in the limits τ → 0 and ωτ � 1, using either quantum or classical arguments.
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3 Selection Rules and Helium

(1) Summary of selection rules. Write down the selection rules for electric dipole radiation,
distinguishing exact and approximate rules. (Note that for hydrogen the approximate rules
are exact as well, because there is no ambiguity about the fact that single electron has spin
half.) Draw an energy level diagram for hydrogen (use the vertical direction for energy,
and separate the states horizontally by angular momentum `). How do the rules apply to
hydrogen? (To answer this you will need to find out the parity of the hydrogen states.
Remember that the wavefunction takes the form Rnl(r)Y`m(θ, φ). What happens to the
coordinates r, θ and φ under the parity operation?)

(2) Scaling: hydrogen-like ions

(a) How do the energy levels of hydrogen-like ions scale as a function of the nuclear charge Z?
Show that the wavelength of n = 2 → n = 1 transition in hydrogen occurs at a wavelength
of 121.57 nm. (You can check the values of physical constants at:

http://physics.nist.gov/cuu/Constants/index.html.
If you are getting 121.51 nm you have forgotten the reduced mass correction! But it’s obvi-
ously a small effect and it you can probably continue to ignore it.) The following wavelengths
(as well as many others) are observed in emision from a plasma: 3.375 nm, 2.848 nm, 2.700
nm, 18.226 nm, 13.501 nm, 12.054 nm. Show that this spectrum is consistent with emission
from a hydrogen-like ion, and identify the element. [Method: first make a reasonably accu-
rate sketch of this spectrum on a frequency scale, then guess the identity of one or more of
the transitions, then confirm your guess using your knowledge of the pattern to be expected,
and hence deduce Z].

(b) How does the mean radius for an electron in the ground state of hydrogen-like ions scale as
a function of the nuclear charge Z? What is the mean radius for an electron in the ground
state of this ion?

(3) Scaling: muonic ions A muon has mass 206 times the electronic mass and the same charge
as an electron. The particle may be captured by an atom and the radiation which is emitted
as the muon cascades through the energy levels can be measured.

(a) Assuming the muon-nucleus system can be treated as hydrogen-like, find the energy in MeV
of the photon emitted as the muon goes from a state with principal quantum number 2 to
the ground state in an atom of iron and lead.

(b) †Is it reasonable to neglect the effect of the electrons in this calculation as a first approxi-
mation? (Consider the mean radius of the muon orbits). Do you think the influence of the
nuclear charge has been accurately accounted for? (The observed energies are 1.255 MeV for
iron and about 5.88 MeV for lead).

(4) He: ionisation energy. The ionization energy is the energy required to remove one electron
from an atom or ion in its ground state, leaving it in the ground state of the next higher
ionization stage. (The energy is often quoted in eV and referred to as an ionization potential.)

(a) If we make the (poor) approximation of ignoring the electron-electron repulsion altogether,
what value (in eV) is obtained for the ionization potential of the ground state in helium? How
much additional energy would then be required to remove the second electron? Assuming
these estimates have been made as accurately as reasonably possible within their respective
assumptions, state the degree of accuracy of each of these two results (i.e. how close they
may be expected to be to the true first and second ionization energies for helium.)

(b) To do better, use the variational method. Using hydrogen-like wavefunctions for both
electrons: ψ1s =

√
Z3/πa3

0 exp(−Zr/a0), show that

〈 1

r1
+

1

r2
〉 =

2Z

a0
.
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Using also 〈p2
1 + p2

2〉 = 2Z2h̄2/(a2
0) and 〈1/r12〉 = 5Z/(8a0), show that the mean energy as a

function of an effective nuclear charge Z is

E(Z) = −2ER
(
4Z − Z2 − 5Z/8

)
.

Complete the variational procedure, and hence obtain an upper limit for the ground state
energy, and a lower limit for the ionization energy of helium.

(5) Spectroscopic notation and Helium Wavefunctions. Two of the energy levels in He-
lium have the standard notation 1s2s 1S0 and 1s2s 3S1. Explain every part of this notation.
The difference in the notation for the two levels stresses a difference in the spin part of the
wavefunction, but the spatial part is also different: what is the important distinguishing
feature between the two spatial wavefunctions?

(6) Variational method. Apply the variational method to find an upper limit on the ground
state of a particle in the potential

V =
{
mgx for x > 0
∞ for x < 0

(This is the bouncing ball potential: the particle falls under gravity to x = 0 and then
bounces back again.)

(a) What are the boundary conditions for the wavefunction at x = 0 and x → ∞? Show that
a suitable wavefunction form is

ψ(x) ∝
{
x exp(−ax) for x > 0
0 for x < 0.

Find the expectation value of the Hamiltonian. (Don’t forget to normalize the wavefunction!).

(b) Complete the variational calculation to find an upper bound for the ground state energy.
You should find

E0 ≤ 3

(
9h̄2g2m

32

)1/3

.
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