
DATA ANALYSIS Interpreting Results 1

What does the result of an experiment tell you?

In the famous oil-drop experiment Millikan measured e to be, converting to SI units,

1.592× 10−19 C. What does this tell you:

• e = 1.59200000000× 10−19 C? Obviously not!

• 1.591 C< 1019e < 1.593 C? Well maybe. There’s obviously some range of possible values,

but can we assume that it’s given by the number of digits? In general NO!! We distin-

guish between

- the precision of a result: the least distinguishable change, given by the number of

digits;

- and the accuracy: the difference between the result and the true value.

In modern notation, Millikan gave the result as e = 1.592(2)× 10−19 C.

The figure in brackets is to be interpreted as a range on the last digit, so this

implies a range of values between 1.590× 10−19 C and 1.594× 10−19 C.

A RESULT IS MEANINGLESS WITHOUT AN ERROR ESTIMATE.

So does Millikan’s result tell us that e lies within that range? Still NO!
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The result implies that e probably lies within that range, but there is a definite but non-zero

probability that it lies outside that range. In order to attach numbers to these probabilities

we need to know more than Millikan told us about the meaning of the error estimate.

The most complete information you could

give is a Probability Distribution Function

(PDF) of the result of an experiment, giv-

ing the probability that the result lies in any

range. For the three marked ranges(±1, ±2,

±3 standard deviations) about the mean, the

probability is the area between the ordinates

(68%,95%,99.7% for this normal distribu-

tion.)

But however you interpret the error the result is INCONSISTENT with the accepted value of

e of 1.602× 10−19 C. But that’s another story . . .
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Central Limit Theorem

The normal distribution is an important

case because of the central limit theorem:

the PDF of the result of an experiment ap-

proaches a normal distribution as the num-

ber of different error contributions increases.

This is illustrated here for a uniform

distribution, appropriate to a single digiti-

sation error. The three plots show how the

PDF of the combination of one, two or three

uniform distributions rapidly approaches the

normal distribution.
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How important is the error?

Over the century since Millikan’s experiment, the importance of data anysis and the presen-

tation of errors has grown steadily. The error is now at least as important as the result, and

in some types of experiment much more so: null experiments, secular variation.

In 1571 the Dominican friar Egnatio Danti collected the following measurements of the

Obliquity of the Ecliptic, ε:

Observer Date Value of ε

Ptolemy circa 150 23◦51′20′′

Albategni 880 23◦35′00′′

Arabel 1070 23◦34′00′′

Almeone 1140 23◦33′00′′

Danti 1570 23◦29′00′′

(Quoted in The Sun in the Church, J L Heilbron, Harvard, 1999, p.135)

These raise the reasonable conjecture that ε is decreasing. But all these values depended on

naked-eye astronomy (remember Galileo’s telescope was 1609), for which a minute of arc is a

pretty small angle. And none of the authors prior to Danti had quoted errors.
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Suppose we have a set of measurements xi of some well-defined quantity.

We define the true value of the quantity to be X. This is, of course, and remains unknown.

But we can write

xi = X+ ϵi

where ϵi is the ERROR in the i’th measurement.

Why do measurements have errors?

There is always some fundamental stochastic or random process that limits a measurement.

This could be due to (for example):

Thermal fluctuations

Fundamental quantum-mechanical uncertainty

Seismic noise

Atmospheric turbulence.

But because these processes are random we can get a more accurate answer by averaging:

⟨ϵi⟩ = 0 and ⟨ϵiϵj⟩ = 0 — in words, the errors average to zero and are uncorrelated. (Hence

if the repeated measurements are all identical, the measurement is non-ideal because informa-

tion is being thrown away.)
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But not all errors are so well-behaved. The problem with Millikan’s result for the oil-drop

experiment was that the formula for e included the viscosity of air, and he used the wrong

value.

So although the measurements he took were correct, every result for e was wrong.

If ⟨ϵi⟩ ̸= 0 then it is called the bias or the systematic error in the result.

Systematic errors are many and various:

Parallax

Calibration of meters

Zero offset

Backlash

Temperature drift

. . .

The systematic errors ultimately limit the accuracy we can obtain by averaging, so we nor-

mally keep a separate account of them:

xi = X+ ϵsys + ϵi or xi = x+ ϵi where x = X+ ϵsys.
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We now consider a set of measurements xi of the quantity X made with the same equipment.

The Basic Questions:

(1) How accurate are the measurements?

(2) What’s the best result?

(3) How accurate is that?

A useful fiction is to consider a much larger population of possible measurements we could

have taken of which the N actual ones are a sample. (Obvious where that idea came from!).

Then x is the mean of that larger population. x, like X, is and remains, unknown.

We can then assume that the ϵi are random:

⟨ϵi⟩ = 0 and ⟨ϵiϵj⟩ = 0 for i ̸= j

where the angle brackets denote the population average.

In the case i = j we have

⟨ϵ2i ⟩ = Vx the Population Variance; (the usual notation is var(x))

and
√
Vx = σx, the Population Standard Deviation, the basic measure of the width of the

distribution of measurements (some more, some less).
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The Answers:

So now we are dealing with N repeated measurements xi subject to random errors obtained

by an identical process (so there is no objective reason to prefer one result to any other).

We return to the questions posed above:

(1) How accurate are the measurements?

Our best guess at the population variance/standard deviation is

Vx =

∑
i(xi − x̄)2

N − 1
σx =

√∑
i(xi − x̄)2

N − 1

The puzzle is why N − 1? This is because we only have N − 1 measures of the spread of

the distribution.

(2) What’s the best result?

Our best guess at the population mean is x̄ =

∑
i xi

N
(3) How accurate is that?

Our best guess at the variance/standard deviation of the mean is the standard error:

Vx̄ =
Vx

N
=

∑
i(xi − x̄)2

N(N − 1)
σx̄ =

σx√
N

=

√∑
i(xi − x̄)2

N(N − 1)
.
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Millikan’s Second Method for h/e

After completing the oil-drop experiment Robert Millikan turned to testing Einstein’s photo-

electric equation:

eV = hν − Φ = hν − eV0 → V =
h

e
ν − V0.

for the stopping potential V of photoelectrons liberated by light frequency ν. One way he

measured h/e was to take a pair of frequencies A and B. With a sandwich of data ABA he

could extract the slope as ∆V/∆ν. He repeated this nine times with the same A frequency

and different B frequencies:

Slope: 4.11, 4.14, 4.10, 4.12, 4.24, 3.98, 4.04, 4.24, 4.21, ×10−15 V/Hz.

These give:

Mean 4.131 × 10−15 V/Hz

Population Standard Deviation 0.089 × 10−15 V/Hz

Standard Error 0.030 × 10−15 V/Hz

Thus the final result is 4.13(3) × 10−15 V/Hz. The fractional error is the error divided by the

result, which is 0.007, or 0.7%. (The currently accepted value is

h/e = 4.135 667 33(10) × 10−15 V/Hz, a fractional error of 2.5 × 10−8.)
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We have an experimental value a, with an error (standard deviation) σa.

Suppose we want to work out the error in a function f(a).

This is called propagating the error.

Provided we can approximate the function over the small range by a straight line then it ap-

pears from the diagram that σf =
(

df
dx

∣∣∣
a

)
σa.
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However the slope might be negative:

So the correct formula must be

σf =

∣∣∣∣( df

dx

∣∣∣∣
a

)∣∣∣∣σa or equivalently Vf =

(
df

dx

∣∣∣∣
a

)2

Va.
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Simple examples of Error Propagation

f(a) σf

ka |k|σa

k/a
|k|σa

a2

ln(ka)
σa

a
exp(ka) exp(ka) |k|σa

The interesting example here is the logarithm:

• The fractional error σa/a is also the error in the logarithm;

• Multiplying the argument of the log by the constant k does not affect the error.

CWPP 19/10/2018



DATA ANALYSIS Combining Errors 13

Suppose we want to use, in a calculation, two experimental values a and b, each with errors

σa, σb:

a = a+ ϵa where ⟨ϵ2a⟩ = Va = (σa)
2

and similarly for b:

b = b+ ϵb where ⟨ϵ2b⟩ = Vb = (σb)
2

The simplest case is where we wish to calculate c = a+ b:

a+ b = a+ b+ ϵa + ϵb = c+ ϵa + ϵb.

Thus in each individual case the error in using our measured values a and b to calculate c is

simply the sum of the errors. But what is it on average — because the errors could add, if

we’re unlucky, or cancel?

The variance of the result is, as usual,

Vc = ⟨ϵ2c⟩ = ⟨(ϵa + ϵb)
2⟩ = ⟨ϵ2a⟩+ ⟨ϵ2b⟩+ 2⟨ϵaϵb⟩ = Va + Vb + 2Cab

The final term here is called the covariance of a and b, (usual notation cov(a, b)).

It measures the extent to which the errors in the two variables are coupled.
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Covariance and Independence

The simplest case is when the errors in a and b are independent, so that positive and negative

errors each occur randomly. In these circumstances the covariance is zero: Cab = 0.

The opposite case would be when the value of b is actually calculated from a, so that the er-

ror in b is perfectly correlated with the error in a:

Perfect Correlation: ϵb = αϵa → Cab = αVa and Vb = α2Va → Cab = ±
√

VaVb.

In fact there is a very general inequality (the Schwarz or Cauchy-Schwarz inequality) which

states

(⟨ϵaϵb⟩)2 ≤ ⟨ϵ2a⟩⟨ϵ2b⟩ where the equality occurs when ϵb = αϵa

so that we can write

Cab = r
√

VaVb = rσaσb where − 1 ≤ r ≤ 1.

The coefficient r is the correlation coefficient, with r = 0 representing independence, and

r = ±1 representing perfect linear correlation.

These cases ultimately depend on the joint PDF of a and b:

• In the independent case P (a, b) = pa(a)pb(b),

• More generally P (a, b) is not factorizable.
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For a general c = f(a, b) we simply propagate the error due to a and b through the function

f :

c = c+ ϵc = f(a+ ϵa, b+ ϵb) = f(a, b) +
(∂f
∂a

ϵa +
∂f

∂b
ϵb

)
to first order. Thus the error in the computed value of c is ϵc given by

ϵc =
(∂f
∂a

ϵa +
∂f

∂b
ϵb

)
= gTe (or eTg) where g =

( ∂f
∂a
∂f
∂b

)
, e =

(
ϵa
ϵb

)
implying that the variance is

Vc = gT ⟨eeT ⟩g = gT

(
⟨ϵaϵa⟩ ⟨ϵaϵb⟩
⟨ϵbϵa⟩ ⟨ϵbϵb⟩

)
g = ( ∂f

∂a
∂f
∂b )

(
Va Cab

Cab Vb

)( ∂f
∂a
∂f
∂b

)
.

Combining Independent Errors

We now concentrate on the important case where the errors in a and b are independent.

In the case we looked at above c = a+ b we found Vc = Va + Vb or:

σc =
√

σ2
a + σ2

b .

This is called adding the errors in quadrature.
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Simple Examples

General Result c = f(a, b) σ2
c =

(
∂f

∂a

)2

σ2
a +

(
∂f

∂b

)2

σ2
b

Sum c = a+ b σ2
c = σ2

a + σ2
b

Difference c = a− b σ2
c = σ2

a + σ2
b

Product c = ab
(σc

c

)2

=
(σa

a

)2

+
(σb

b

)2

Quotient c =
a

b

(σc

c

)2

=
(σa

a

)2

+
(σb

b

)2
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The examples I am going to discuss are where we have a dataset of values of two variables x

and y, and a theoretical expectation of a functional relation between them:

y = f(x; a) for some more-or less known function f with parameters a.

Examples include y = kx or y = c +mx, where the parameters are k, m, c. These are linear

models, where the parameters simply multiply known functions of x. But there could be more

complicated relationships like y = eax.

[This excludes many classes of data analysis which are important in other fields, such as epi-

demiology. For example they might have data on the incidence in a sample group of a cer-

tain disease, together with lifestyle or genetic data on the same group. The incidence rate

depends on many variables, and the question of whether a particular data item is or is not

relevant is one of the unknowns.]

Then we have to do the following:

(1) Find the parameter values a that give the best fit.

(2) Consider whether the data are consistent with this functional form: deviations ‘look ran-

dom’, and consistent with our error estimates.

(3) Assign error estimates to the parameters.

Most students skip question (2)!!
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(1) Finding the Best Fit

The first thing to do is to find the best fit between the function and the data, taking into ac-

count the errors in the data. This requires you to understand the errors in the data! In all

cases known to me the pre-programmed fitting routines assume that all the error is in y and

that the values of x are precise. This is entirely for convenience: it produces a well-posed

mathematical problem with a unique solution: trivially easy for a linear model, and not too

hard for many non-linear models. Assuming errors in both x and y just makes the problem a

great deal harder.

The consequence is that you have to decide which variable has the larger errors in compari-

son with the span of the data. That must be taken as y.

For the same reason the routines also assume that all the data have independent errors.

Then the best fit criterion is usually the least-squares one:

R(a) =
∑
i

(
yi − f(xi; a)

)2

→ Minimize R with respect to a.

CWPP 19/10/2018



DATA ANALYSIS Fitting Data 19

Minimisation for the General Linear Model

The general linear model (with two parameters) takes the form y = a1f1 + a2f2. We shall use

as an example fitting a straight line y = mx+ c to the dataset:

x =


0
1
2
3
4

 y =


2.55
2.69
3.95
4.77
5.36

 so in this case a1 = c, f1 =


1
1
1
1
1

 and a2 = m, f2 =


0
1
2
3
4

 .

The y-values are subject to a random error with standard deviation 0.2.

If we make a rectangular matrix out of the two column vectors we can write this as

F =


1 0
1 1
1 2
1 3
1 4

 a =

(
c
m

)
then yfit = Fa r = y − yfit

The function to be minimised is thus

R(a) = rT r.

At the minimum we define a = amin, r = rmin = y − Famin, R(amin) = Rmin.
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At the minimum, any small change in parameters leaves R unchanged, to first order in the

small change. So when a = amin + δa, r = rmin − Fδa:

R(a) = Rmin − δaTFT rmin − rTminFδa+ 2nd-order term

The two first-order terms are identical.

The minimization condition δR = 0 for any δa is equivalent to FT rmin = 0: the residuals

are orthogonal to all the f .

(FTF)amin = FTy.

This is a system of linear equations for the parameters which we can solve as long as the ma-

trix FTF is non-singular. (This can only happen if we have done something stupid like put

the same functional form into two different f ’s. A much more common problem is that it can

become nearly-singular, if we use f ’s that are too similar.) Thus the general linear model has

a very simple solution involving just a matrix inverse:

amin = (FTF)−1FTy which gives yfit = Py where P = F(FTF)−1FT .

The minimised residuals are then given by rmin = y − yfit.

CWPP 19/10/2018



DATA ANALYSIS Fitting Data 21

Applying this to our example:

(FTF) =

(
5 10
10 30

)
(FTF)−1 =

(
0.6 −0.2
−0.2 0.1

)
FTy =

(
19.32
46.34

)
These give

amin =

(
2.324
0.770

)
P =


0.6 0.4 0.2 0.0 −0.2
0.4 0.3 0.2 0.1 0.0
0.2 0.2 0.2 0.2 0.2
0.0 0.1 0.2 0.3 0.4
−0.2 0.0 0.2 0.4 0.6

 r =


+0.226
−0.404
+0.086
+0.136
−0.044

 Rmin = 0.24212

Suppose we had a second dataset with the same x-values: all the F-matrices are the same.

y =


2.17
2.62
3.94
4.39
5.46

 FTy =

(
18.58
45.51

)
amin =

(
2.046
0.835

)
r =


+0.124
−0.261
+0.224
−0.161
+0.074

 Rmin = 0.16507
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(2) Is the data consistent with the best fit?

In neither case do the residuals show any obvious systematic deviation, and they are compa-

rable with the standard deviation of 0.2 — the largest is 2 standard deviations, which is not

large enough cause surprise in a dataset of 10. So I would say yes. However the residuals are

somewhat smaller in the second case: we shall look at the implications of this in the next lec-

ture.

(3) Accuracy of the parameters.

The y-data are subject to statistical error:

y = y+ e where ⟨eeT ⟩ = VyIN (cf p. 15: the ϵi are independent with equal variance.)

Then the true mean of the parameter vector is given by a = (FTF)−1FT y, and the true error

in amin is amin − a = (FTF)−1FTe. The variance-covariance matrix of the parameters is thus

⟨(amin − a)(amin − a)T ⟩ = (FTF)−1FT ⟨eeT ⟩F(FTF)−1.

When we substitue for ⟨eeT ⟩ this simplifies rather beautifully:

⟨(amin − a)(amin − a)T ⟩ = Vy(F
TF)−1.
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For the current example this matrix is

Vy(F
TF)−1 =

(
0.024 −0.008
−0.008 0.004

)
giving

(
c
m

)
=

(
2.324± 0.155
0.770± 0.063

) (
2.046± 0.155
0.835± 0.063

)
These are consistent, which is not surprising since the underlying y-datasets are consistent.

If we don’t have a prior number for Vy, can we estimate it from the residuals?

Yes! Or at least provided a condition is satisfied: provided the true values y do indeed satisfy

the functional form. But the true values of our experiment are only true in averaging over

the random error; any systematic errors present could cause the data points to deviate from

the expected form even on average.

Thus provided we know that y is truly given by the functions in F, so that the deviations from

the fit are indeed random, an estimator for Vy is given by:

⟨Rmin⟩ = Vy(N −M)

for a fit of N data points to M parameters.
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Of course all the fitting routines simply assume this condition is satisfied and use Rmin to

assign errors to the parameters without comment. Here as always it is up to the user to de-

termine whether there are relevant systematic errors that could affect the result.

So in our example, if we did not have the y-standard deviation of 0.2 we could estimate it

from the values of Rmin for the two datasets:

Rmin Vy σy m c

Set 1 0.24212 0.081 0.28 2.324(220) 0.770(90)

Set 2 0.16507 0.055 0.23 2.046(182) 0.835(74)

Taken at face value this implies that the parameter values from the second experiment are

more accurate than the first because they fit the straight line better. So we could make a

weighted mean of these values, giving more weight to the second one.

BUT: given the two y-values for each x we would find a ‘best estimate’ for it by taking a sim-

ple mean, giving them equal weight. If we then fit these more accurate values to a straight

line we will get parameter values that are just the simple mean of the two sets found above.

So we have two different approaches for combining the datasets: which is right?
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Cherry-picking

The selection of datsets solely on the basis that they conform better to some theoretical ex-

pectation is known as cherry-picking the data. It is based on the idea that parameters de-

rived from fits with small residuals are more accurate than those with large residuals. It is

thus an attempt to defeat the statistics of random error. This idea is false.

Consider repeated runs of an experiment with no changes in the equipment or procedures,

just random variation in the results. Is a result derived from a run with low scatter better or

not? The assigned error suggests that it is, but how accurate is the assigned error?

We shall look at two important properties of the estimator of the y-variance derived from the

residuals a fit of N y-values to M parameters.

(1) The standard deviation σσ of the estimator of the y-standard deviation (the error on the

error!)

(2) The covariance of the y-variance estimator with the actual squared error in the parame-

ter values.
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(1) The Error on the Error:

A lengthy calculation (see 2017 lecture notes) shows that the error on the y-standard devia-

tion estimator depends on the shape of the underlying PDF, and not just its width:

σV = Vy

√
2 + (k − 3)

N − 1

Here k is defined by ⟨ϵ4⟩ = kVy
2. For a normal distribution k = 3. However the fourth

power makes it sensitive to the tail of the distribution: for a hard cut-off, with no tail, it is

less (uniform distribution k = 9/5) and for a longer tail it is greater.

This error in the Vy proagates to an error σy:

σσ = σy

√
1 + (k − 3)/2

2(N − 1)

In our earlier example N = 5 and N − M = 3 so the fractional error on σy is (assuming

normal errors) 1/
√
6 = 41%. So the difference between the σy from the two datasets (Table

on p.24) is entirely to be expected.

However this leaves open the question: might datasets with small residuals give, on average,

more accurate parameter values (the underlying assumption of cherry-picking)?
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(2) The Covariance of Linearity and Accuracy:

We need to calculate C, the correlation of the difference between the variance estimator and

the true variance with the squared error in the parameters. Another long calculation yields a

result for this covariance:

C ∝ (k − 3).

THUS FOR NORMAL ERRORS LINEARITY AND ACCURACY ARE UNCORRELATED!

It is no more likely that parameter values derived from datasets with small residuals will be

more accurate, provided all the deviations are random and normally distributed.

Indeed for a uniform distribution they are negatively correlated: parameters obtained from

data with a large residuals are (on average) more accurate than from data with small residu-

als.
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Closing Remarks:

• Experimental results are usually subject to systematic error which cannot be removed by

averaging. It is up to the experimenter to eliminate or estimate these.

• In addition we have assign random errors to results.

• These come from the deviation of results from expected patterns:

·In a single value, from the fact that the results differ (cf pp 8–9).

·In related values, by propagation and combination of errors (cf pp 10–16).

·In an (x, y) dataset, from the fact that they do not fit the expected functional form

(cf pp 17–24).

• Unless you have an enormous dataset these error estimates are very uncertain

(cf pp 25–26).

• You can’t beat statistics: if you find a dataset with small scatter it isn’t likely to be any

more accurate, so you should always combine results with a weight given only by the

number of contributing data points (N − M) unless there is an objective reason to do

otherwise (cf p. 27).
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