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Vector Notation: Vector r, Unit vector r̂; Components ri, i = 1, 2, 3.

Vector Calculus

For scalar field Φ or vector field A:

Grad Φ = ∇Φ =
∂Φ

∂ri
Gradient — normal to equipotential surfaces

DivA = ∇ · A =
∂Ai

∂ri
Divergence — origin of flux lines

CurlA = ∇∧A = ǫijk
∂Ak

∂rj
Rotation — flux lines form loops

Integral theorems:
∫

∇ · A d3r =

∫

A · dS or more generally

∫

∂F

∂ri
d3r =

∫

F dSi

∫

∇∧A · dS =

∫

A · dr

Flux of A across a surface =
∫

A · dS.

Representation with field lines useful if ∇ · A = 0 in most places.

If ∇∧A = 0 then there exists Φ such that A = ∇Φ. (Φ not unique: arbitrary constant.)

If ∇ · B = 0 then there exists A such that B = ∇∧A. (A not unique: arbitrary gradient.)
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Coulomb’s Law

Force on point charge q1 due to q2: F12 =
α

4π

q1q2r̂12

r2
12

. Linearity. Divisibility.

Introduce electric field concept as intermediary between charges:

Charge → Field → Force on Charge.

Define Electric Field E by
F = qE

so that the electric field at r due to a point charge q at r0 can be written

E(r) =
α

4π

q(r− r0)

|r− r0|3
.

Easy to show that ∇ · E = 0 and ∇∧ E = 0 (except possibly at r0). Hence can use field lines,

and Electrostatic Potential Φ:

E = −∇Φ
Φ =

αq

4π|r− r0|

Hence work done on this field to move a test charge from a to b
∫ b

a

−F · dr =

∫ b

a

q∇Φ · dr = q (Φ(b) − Φ(a)) .

Hence: Electrostatic Energy V = qΦ
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Gauss’ Law

Consider the surface integral Q =

∫

E · dS due to a set of point charges qi.

By linearity Q =
∑

i

Qi where Qi =

∫

Ei · dS where Ei is the field due to qi.

Since ∇ · Ei = 0 except at the charge, Qi = 0 if qi is not inside S. If it is inside S, Qi = αqi:
∫

E · dS = α
∑

Charge enclosed by S

Using the divergence theorem, and writing enclosed charge in terms of a charge density ρ(r)

∫

∇ · E d3r = α

∫

ρ d3r

Units: these are fixed by the arbitrary constant α, for which there are at least three common

choices:

System: Gauss Heaviside S.I.

α: 4π 1 1/ǫ0

Hence:
∇ · E =

ρ

ǫ0
= αρ

M.1
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Example of Potential and Field: Two Point Charges

Consider a system of two charges q and −q.

Φ = Φ1 + Φ2 =
q

4πǫ0|r− r1|
+

−q

4πǫ0|r− r2|
E = −∇Φ = − (∇Φ1 + ∇Φ2)

The point dipole p is defined by the limit r1 → r2 and q(r1 − r2) → p:

Φ(r) = lim
a→0,qa→p

q

4πǫ0|r− r2 − an| −
q

4πǫ0|r− r2|
= p · ∇2

(

1

4πǫ0|r− r2|

)

This is minus the gradient with respect to field position.
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Point Electric Dipole

For a point electric dipole at the origin:

Φ = −p · ∇
(

1

4πǫ0r

)

=
p · r

4πǫ0r3
E = −∇Φ =

3(p · r̂)r̂− p

4πǫ0r3

The potential energy of the dipole in an external field is given by

V = lim
a→0

p

(

Φ(r + a) − Φ(r)

a

)

= p · ∇Φ = −p · E.

In a uniform field there is no force, but a non-zero couple.

ELECTROMAGNETISM Electrostatics 6

Poisson’s Equation

Substitute E = −∇Φ into the first Maxwell equation:

∇2Φ =
−ρ

ǫ0
= −αρ

For a given charge distribution ρ this determines Φ and hence E. There is a formal solution

using a Green function: consider the potential due to the charge in a small volume d3r′ at r′:

dΦ(r) =
ρ(r′)d3r′

4πǫ0|r− r′|

which we can integrate to give

Φ(r) =

∫

ρ(r′)d3r′

4πǫ0|r− r′| .

The function G(r, r′) =
1

4πǫ0|r− r′| gives the potential at r due to a unit point charge at r′,

and satisfies

∇2G(r, r′) = −δ(r− r′)/ǫ0.
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Laplace’s equation

In a charge-free region the potential satisfies Laplace’s equation: ∇2Φ = 0

Solutions to this are sometimes called harmonic functions. Consider the solution in spherical

co-ordinates:
1

r2

∂

∂r
r2 ∂Φ

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂Φ

∂θ
+

1

r2 sin2 θ

∂2Φ

∂φ2
= 0.

If we separate variables Φ = R(r)C(θ, φ), the angular part will be spherical harmonics.

Convenient to use a real set, and differently normalised to the Ylm:
∫

Cl,mCl′,m′ dΩ =
4π

2l + 1
δll′δmm′ .

These are much more memorable: C0,0 = 1, C1,m = {sin θ cos φ, sin θ sin φ, cos θ} = r̂m

This leaves
d

dr
r2 dR

dr
= l(l + 1)R.

This is homogeneous and can be solved by a power of r. Try R = rn:

n(n + 1) = l(l + 1) so n = l or n = −l − 1.

The potential due to any charge distribution, exterior to it, can thus be written

Φ(r, θ, φ) =
∑

l,m

Ql,m

4πǫ0rl+1
Cl,m(θ, φ).
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Multipole Expansion

Consider the potential Φ of a localised charge distribution

ρ. We can use the Green function:

Φ(r) =

∫

ρ(r′) d3r′

4πǫ0|r− r′|

The generating function for Legendre polynomials is given

by

1

|r− r′| =
1√

r2 + r′2 − 2rr′ cos Θ
=
∑

l

rl
<

rl+1
>

Pl(cos Θ) =
∑

l,m

rl
<

rl+1
>

Cl,m(θ, φ)Cl,m(θ′, φ′)

so that in the exterior region (r> = r) Φ becomes

Φ(r) =
∑

l,m

Ql,m

4πǫ0rl+1
Cl,m(θ, φ) where Ql,m =

∫

(r′)lCl,m(θ′, φ′)ρ(r′) d3r′

=
q

4πǫ0r
+

p · r̂
4πǫ0r2

. . . where q =

∫

ρ d3r′, p =

∫

r′ρ d3r′

Ql,m are the multipole moments of the charge distribution: monopole, dipole, quadrupole . .
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Energy in the Electric field

For a pair of point charges the potential energy, defined as the work to bring them from ∞, is

V =
q1q2

4πǫ0r12
= q1Φ(r1) = q2Φ(r2) =

1

2
(q1Φ(r1) + q2Φ(r2)) .

Thus for a system of charges the energy is V =
∑

i>j

qiqj

4πǫ0rij
=
∑

i6=j

1

2

qiqj

4πǫ0rij
=
∑

i

1

2
qiΦ(ri).

If we can subdivide the charges indefinitely, so that there are no point charges of finite mag-

nitude, then we can re-write this as

V =

∫

1

2
ρ(r)Φ(r) d3r =

∫

1

2
ǫ0Φ∇ · E d3r =

∫

1

2α
Φ∇ · E d3r

(If there are finite point charges then this differs by the inclusion of the i = j terms and di-

verges.) We can complete the differential under the integral (or integrate by parts):

∇ · (ΦE) = Φ∇ · E + E · ∇Φ = Φ∇ · E− E2.

The integral extends over the charge distribution; if we extend it to all space the divergence

integrates to a surface term which tends to zero (Φ ∝ r−1, E ∝ r−2) to leave

V =

∫

1

2
ǫ0E

2(r) d3r =

∫

1

2α
E2(r) d3r.

This suggests that we can view the potential energy as residing in the field.
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Biot-Savart Law

Ampère, Biot and Savart found a form analagous to Coulomb’s law for the force between two

current elements. We factor the expression into

Current I1(r1) → Field B(r2) → Force on Current I2(r2):

dB(r2) =
γα

4π

I1 dr1 ∧ (r2 − r1)

|r2 − r1|3

dF2 = β I2 dr2 ∧ B(r2)

Integration around the circuit gives the total B.

(For historical reasons B is more correctly called the magnetic flux density or the magnetic

induction; magnetic field is something else.)

Units

These are fixed by the constants β and γ, one of which is arbitrary but which have to satisfy

βγc2 = 1:

System: Gauss Heaviside S.I.

β: 1/c 1/c 1
γ: 1/c 1/c µ0ǫ0
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Example of Field: Circular Current Loop

It follows from Biot-Savart that ∇ · B = 0. ∇ ∧ B is also zero when integrated around the

source circuit. (But both expressions diverge at points where there is a line current.) We can

thus use a field-line representation. Carry out the integral for a circular current loop:

r =





x
y
z



 r1 =





a cos θ
a sin θ

0



 dr1 =





−a sin θ dθ
a cos θ dθ

0





B(r) =
µ0I

4π

∫

dr1 ∧ (r− r1)

|r− r1|3
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Lorentz Force

We have the same problems with line currents as point charges — infinite field strength and

energy density — so we define a current density J as charge flow/unit time/unit area. In

terms of J:

B(r) =
µ0

4π

∫

J(r1) ∧ (r− r1) d3r1

|r− r1|3
.

Instead of a line element of current we now have a volume element, which experiences a force

dF = J ∧ B d3r = βJ ∧ B d3r.

Putting this together with the electric force on a charge density ρ we obtain a force density f:

f = ρE + J ∧ B = ρE + βJ ∧B

If the charge density consists of a single point charge q moving with velocity v then ρ = q δ(r)

and J = qv δ(r) and the integrated force is

F = q (E + v ∧B) = q (E + βv ∧ B)
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Vector Potential

In the current loop example the field lines form loops around the current. This suggests that

the curl equation may break down where there is a current, but that the div equation is re-

ally true:

∇ ·B = 0 M.2

This implies that we can define a Vector Potential A such that:

B = ∇∧ A

This does not define A uniquely, and we can add the supplementary condition ∇ · A = 0. We

can get an expression for A from the integral for B:

B(r) =
µ0

4π

∫

J(r′) ∧ (r− r′) d3r′

|r− r′|3 =
µ0

4π

∫

∇ 1

|r− r′| ∧ J(r′) d3r′

= ∇∧
[

µ0

4π

∫

J(r′)

|r− r′| d3r′
]

.

This suggests we can identify the integral with A. (It does satisfy ∇ · A = 0 when ∇ · J = 0.)
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Example of Vector Potential: Uniform B Field

Consider a uniform B field in the z direction. The vector

potential A is required to satisfy:

∇ ∧A = Bẑ and ∇ · A = 0.

One possible solution is A = 1
2
B ∧ r.

The origin appears to be a special place (A(0) = 0), which in a uniform field is surprising. In

fact it isn’t: we can add obviously add to A any constant vector A0.

If we choose A0 = −1
2B ∧ r0 then

A′ = A + A0 =
1

2
B ∧ (r− r0).

This is an equally good vector potential, with the exactly the same form, but with A = 0

shifted to the arbitrary point r0.
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Ampère’s Law

A(r) =
µ0

4π

∫

J(r′)

|r− r′| d3r′ =
γα

4π

∫

J(r′)

|r− r′| d3r′

The three components of the integral for A are analogous to the Green function solution for

Φ, which suggests that

∇2A = −µ0J = −γαJ.

Consider ∇∧ B = ∇∧ (∇∧A) = ∇(∇ · A) −∇2A.

We know that ∇ · A = 0 if ∇ · J = 0, so

∇∧ B = µ0J = γαJ

Integrating this result over a surface we obtain the integral form of this result which is known

as Ampère’s law:
∫

∇∧B · dS =

∫

B · dr = µ0

∫

J · dS
(

Line integral of B around S
)

= µ0

(

Current through S.
)
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Summary of Electrostatics and Magnetostatics

The E and B fields are generated by charges and currents (with ∇ · J = 0):

∇ · E = ρ/ǫ0 ∇∧ B = µ0J

and also satisfy

∇∧ E = 0 ∇ · B = 0.

Hence we can define potentials by

E = −∇Φ B = ∇∧A

with supplementary conditions

Φ(r) → 0 as r → ∞ ∇ · A = 0 and A(r) → 0 as r → ∞.

Hence the potentials satisfy

∇2Φ = −ρ/ǫ0 ∇2A = −µ0J

which has the Green function solution

Φ(r) =
1

4πǫ0

∫

ρ(r′) d3r′

|r− r′| A(r) =
µ0

4π

∫

J(r′) d3r′

|r− r′| .
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Faraday’s Law of Induction

Consider a wire loop moving in a B field. The charges in the wire are all subject to the force

βv ∧ B per unit charge, which creates a non-zero value of the integral around the wire — an

e.m.f E :
E =

∫

βv ∧B · dr.

Consider the motion over a time δt in which the wire element dr moves δr = vδt:

E = − β

δt

∫

B · δr ∧ dr.

But δr ∧ dr is the area swept out by the wire element in δt, so

E = −β
d

dt

∫

B · dS = −β
dΨ

dt
where Ψ =

∫

B · dS

Ψ is the flux linked to the circuit, and is proportional to the current in whatever circuit is

generating the B field. The coefficient is called an inductance: either self-inductance L or

mutual inductance M :

βΨ1 = LI1 =

∫

B1(r1) · dS1 =

∫

A1(r1) · dr1

βΨ1 = MI2 =

∫

B2(r1) · dS1 =

∫

A2(r1) · dr1
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Another Maxwell Equation

But Faraday found that the same law applied whether the flux change was due to motion in

a static B field, as above, or to a time-dependence in B.

In the latter case the e.m.f. cannot be due to the v ∧B force, and has to be interpreted as an

electric field caused by the time variation of B.

The integral of this electric field around the circuit has to give the e.m.f:

E =

∫

E · dr = −β
d

dt

∫

B · dS

where now the time-dependence is due to B not the motion of the path of integration:

∫

∇∧ E · dS = −β

∫

∂B

∂t
· dS

This has to be true for an arbitrary circuit, so we have the third Maxwell equation

∇∧ E = −∂B

∂t
= −β

∂B

∂t M.3
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Energy in the magnetic field

An alternative derivation of the energy density in the electric field considers a parallel-plate

capacitor, modelled as two sheets of charge q and −q, area A separation d.

The field, by Gauss’s law, is E = q/(ǫ0A), so that the potential difference is ∆Φ = qd/ǫ0A.

Thus the capacitance is C = ǫ0A/d. The stored energy is then

V =
1

2
C∆Φ2 =

1

2

(

ǫ0A

d

)

(

E2d2
)

=

(

1

2
ǫ0E

2

)

(Ad) .

We can apply a similar technique to energy stored in the B field by considering the energy

stored in an inductance 1
2
LI2 = 1

2
IβΨ.

V =
β

2
I

∫

A · dr =
β

2

∫

A · J d3r

But we can substitute ∇∧ B/µ0 (∇∧ B/γα) for J, and integrate by parts:

∇ · (A ∧B) = (∇∧ A) · B −A · (∇∧B).

The divergence can be turned into a surface integral, which → zero: (A ∝ r−2, B ∝ r−3)

V =

∫

1

2µ0
B2d3r =

∫

β

2γα
B2d3r.

This suggests that we can view the energy as residing in the B field.
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Conservation of Charge

Earlier we considered only currents where charge did not build up in any place (∇ · J = 0). In

general this condition does not hold, and the current flow leads to changes in ρ.

Consider an arbitrary volume V in a current flow. The total charge inside V at time t is

Q(t) =

∫

V

ρ(r, t) d3r

The total rate at which charge leaves V is found by integrating the current density over the

bounding surface S:

−dQ

dt
=

∫

V

−∂ρ

∂t
d3r =

∫

S

J · dS =

∫

V

∇ · J d3r.

This must hold for an arbitrary volume, so

∂ρ

∂t
+ ∇ · J = 0

This ensures the local conservation of charge, and is the prototype for other local conserva-

tion laws, which have a density term, a flux term, and in general a loss term as well if the

quantity is not absolutely conserved but can transform into something else.
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Maxwell’s Displacement Current

The only field equation we have so far involving J is ∇∧ B = µ0J = γαJ.

Taking the divergence of this gives ∇·J = 0, which was the constraint under which we derived

it. This is not true in general. Maxwell’s solution to this problem involved the introduction

of another term to link it to M.1 where ρ appears as a source:

∇∧ B − µ0ǫ0
∂E

∂t
= µ0J ∇∧B − γ

∂E

∂t
= γαJ.

This completes the set of four Maxwell equations:

∇ · E = ρ/ǫ0

∇ · B = 0

∇∧ E +
∂B

∂t
= 0

∇∧ B− µ0ǫ0
∂E

∂t
= µ0J

∇ · E = αρ

∇ · B = 0

∇∧E + β
∂B

∂t
= 0

∇∧ B− γ
∂E

∂t
= γαJ

M.1

M.2

M.3

M.4
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Vector and Scalar Potentials

Since E no longer has vanishing curl in general, we cannot represent it as −∇Φ;

however the representation B = ∇∧A is still valid, from ∇ ·B = 0.

∇∧ E = −β
∂

∂t
(∇∧ A) = −β∇ ∧

(

∂A

∂t

)

→ ∇∧
(

E + β
∂A

∂t

)

= 0

This implies that we can always find A and Φ such that:

B = ∇∧A

E = −∇Φ − ∂A

∂t

B = ∇∧A

E = −∇Φ − β
∂A

∂t

Writing the E and B fields in this form ensures that the homogeneous Maxwell equations

(the ones with no source terms: M.2 and M.3 above) are identically satisfied.
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Gauge Transformations

A and Φ are not uniquely defined by the requirement that the above differentials give the E

and B fields. Consider the following transformation:

A′ = A + ∇χ Φ′ = Φ − β
∂χ

∂t
.

The curl of ∇χ vanishes, so the B field is identical, and the two two extra terms in E cancel,

so the E field is also identical.

This is an example of a gauge transformation, and indicates that the potentials as defined

have an unphysical degree of freedom.

(Another example of a useful function with an unphysical degree of freedom is the Q.M. wave

function, for which the overall phase is arbitrary.)

We are free to specify an extra relation between A and Φ; this is called choosing a gauge.

One useful choice (of several) is the Lorentz gauge:

∇ · A + µ0ǫ0
∂Φ

∂t
= 0 ∇ · A + γ

∂Φ

∂t
= 0.

We can always choose χ to bring A and Φ to this form, and even this χ is not unique, so that

there are still restricted gauge transformations within the Lorentz gauge.
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Poynting’s Theorem

We can find a local conservation law for energy in the electromagnetic field.

Take B · (M3) and subtract E · (M4):

(

B · (∇∧ E) −E · (∇∧B)
)

+

(

βB · ∂B

∂t
+ γE · ∂E

∂t

)

+ γαE · J = 0

We can combine the terms in the first bracket as ∇ · (E ∧ B).

We can rewrite the partial derivatives using E · ∂E

∂t
=

1

2

∂E2

∂t
and similarly for the B terms.

Thus we have a conservation law with a loss term:

∇ · S +
∂u

∂t
+ E · J = 0

where:

S =
1

µ0
E ∧B =

1

γα
E ∧ B is Poynting’s vector and represents the energy flux in the field;

u =
ǫ0
2

E2 +
1

2µ0
B2 =

1

2α
E2 +

β

2γα
B2 is the energy density in the field, and is the sum

of the magnetic and electric field energies already found;

E · J represents the rate per unit volume at which the EM field does work on the current

— a loss term from the EM field energy.
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Wave Equations

In the Maxwell equations we can substitute the potentials that satisfy the homogeneous pair:

−∇2Φ − ∂

∂t
∇ · A = ρ/ǫ0

∇∧ (∇∧ A) + µ0ǫ0
∂2A

∂t2
+ µ0ǫ0

∂

∂t
∇Φ = µ0J

−∇2Φ − β
∂

∂t
∇ · A = αρ

∇∧ (∇∧ A) + βγ
∂2A

∂t2
+ γ

∂

∂t
∇Φ = γαJ.

Using the Lorentz gauge these uncouple to give

µ0ǫ0
∂2Φ

∂t2
−∇2Φ = ρ/ǫ0

µ0ǫ0
∂2A

∂t2
−∇2A = µ0J

βγ
∂2Φ

∂t2
−∇2Φ = αρ

βγ
∂2A

∂t2
−∇2A = γαJ.

This is the wave equation, with wave speed 1/
√

µ0ǫ0 = 1/
√

γβ, which we identify as c.

Similarly we can obtain wave equations for E and B. We take the curl of one of M.3 and M.4,

and combine with the t-derivative of the other. In a source-free region:

1

c2

∂2E

∂t2
−∇2E = 0

1

c2

∂2B

∂t2
−∇2B = 0.
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Duality

Maxwell’s Equations have a fairly obvious E → B, B → −E symmetry. This is more ex-

plicit if we postulate the existence of magnetic charge density ρm and current density Jm:

∇ · E = ρ/ǫ0

∇ · B = µ0ρm

∂E

∂t
− c2∇∧ B = −J/ǫ0

∂B

∂t
+ ∇∧ E = −µ0Jm

We define the duality transformation D by

DE = cB

DB = −E/c

Dρ = ρm/c

Dρm = −cρ

DJ = Jm/c

DJm = −cJ

The equations are invariant under this transformation. But in practice ρm and Jm are zero.

So dual solutions exist provided we can find sources for them. For example

E =
1

4πǫ0r3
(3p · r̂ r̂− p) −→ B =

µ0

4πr3
(3m · r̂ r̂− m).

Note that D2 = −1; corresponding to reversing the definition of positive/negative charge.

CWPP 26/8/2008



ELECTROMAGNETISM Electromagnetic Waves 27

Plane Waves I

We shall look for solutions to Maxwell’s equations in free space in the form of plane waves:

each component of E,B ∝ cos(k · r− ωt + φ) ∝ exp i(k · r − ωt + φ) + exp−i(k · r − ωt + φ)

Complex notation: we shall use just the negative frequency component of the wave (some-

times called the analytic signal), writing this as exp i(k · r−ωt+φ); the physical field is found

by adding the complex conjugate rather than taking the real part (a factor of 2 difference).

E = EEEE exp i(k · r− ωt) + c.c. B = BBBB exp i(k · r− ωt) + c.c.

where EEEE and BBBB are complex vectors, incorporating the phase φ.

When we substitute these into Maxwell’s equations ∂/∂t → −iω and ∇ → ik:

k · EEEE = 0

k ∧ EEEE = ωBBBB

k · BBBB = 0

k ∧ BBBB = − ω

c2
EEEE

The scalar product equations follow from the vector product equations, and tell us that the

waves are transverse: E and B lie in the plane perpendicular to k.

Eliminating either EEEE or BBBB from the cross product equations gives:

k2 = ω2/c2

so the waves have phase velocity c.
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Plane Waves II

We then write k = k̂(ω/c):

k̂ ∧ EEEE = cBBBB ck̂ ∧ BBBB = −EEEE

These determine the relative magnitude of EEEE and BBBB and their relative orientations and phase.

We separate these factors by defining the magnitudes E and B (EEEE · EEEE⋆ = E2) and unit complex

polarization vectors e and b (EEEE = Ee, hence e · e∗ = 1).

Dot either equation with its complex conjugate; e.g.

E2
(

k̂ ∧ e
)

·
(

k̂ ∧ e⋆
)

= E2
(

k̂ · k̂ e · e⋆ − |k̂ · e|2
)

= E2 = c2B2

Thus E = cB. Dividing this factor out we get k̂ ∧ e = b and k̂ ∧ b = −e.

Summary

e · e⋆ = b · b⋆ = k̂ · k̂ = 1

e · k̂ = b · k̂ = e · b = 0

k̂ ∧ e = b k̂ ∧ b = −e

e ∧ b⋆ = e⋆ ∧ b = k̂
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Linear Polarization

The simplest solution to these equations is k̂ = ẑ and either e = x̂, b = ŷ or e = ŷ, b = −x̂.

These are linearly polarized. The first of these cases is

E = x̂ E exp(kz − ωt) + c.c. Explicitly

E = x̂ 2E cos(kz − ωt) B = ŷ
2E
c

cos(kz − ωt)

The second case is dual to the first.
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Left Circular Polarization

Superposing two equal orthogonal linearly polarized solutions with a π/2 phase difference

gives e = (x̂ + iŷ)/
√

2, b = (ŷ − ix̂)/
√

2 = −ie. The fields are given by

E =
√

2E (x̂ cos(kz − ωt) − ŷ sin(kz − ωt))

B =

√
2E
c

(ŷ cos(kz − ωt) + x̂ sin(kz − ωt))

This describes a circularly polarized wave. In each plane E and B rotate anti-clockwise look-

ing at the source: left circularly polarized. Note that the dual solution differs only in phase.

CWPP 26/8/2008



ELECTROMAGNETISM Electromagnetic Waves 31

Right Circular Polarization

Alternatively we can superpose with the opposite phase difference:

e = (x̂ − iŷ)/
√

2, b = (ŷ + ix̂)/
√

2 = ie. The fields are given by

E =
√

2E (x̂ cos(kz − ωt) + ŷ sin(kz − ωt))

B =

√
2E
c

(ŷ cos(kz − ωt) − x̂ sin(kz − ωt))

In each plane the vectors rotate clockwise looking at the source: right circularly polarized.
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Elliptical Polarization

A general superposition of linearly polarized states with arbitrary amplitudes and phases re-

sults in elliptical polarization. This plot was generated with e = [(36+ i20)x̂+(48− i15)ŷ]/65

The E vector rotates clockwise, but traces out an ellipse.
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Transport Properties

We shall calculate the energy density and energy flux in the plane waves above. These are

position- and time-dependent, but we shall consider the time-average, which is also indepen-

dent of position. This is because the waves are plane — time averaging is equivalent to phase

averaging, and the only r-dependence is in the phase.

Consider E · E = (EEEE exp i(k · r − ωt) + c.c.)
2

= EEEE · EEEE⋆ + EEEE⋆ · EEEE+ time-dependent terms.

Clearly in this notation any quadratic product involving fields F and G can be written as the

sum of the products of FFFF with GGGG⋆ and FFFF⋆ with GGGG.

Energy Density: ū = 1
2
ǫ0(EEEE · EEEE⋆ + EEEE⋆ · EEEE) + 1

2
(BBBB · BBBB⋆ + BBBB⋆ · BBBB)/µ0 = ǫ0E2 + B2/µ0 = 2ǫ0E2.

The energy density has equal contributions from the E and B fields.

Poynting’s Vector: S̄ = (EEEE ∧ BBBB⋆ + EEEE⋆ ∧ BBBB)/µ0 = (EB/µ0)(e ∧ b∗ + e∗ ∧ b) = ūc k̂.

The energy propagates with velocity c in the wave direction.

These properties are independent of polarization — but angular momentum transport de-

pends on the degree of circular polarization . . .
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Degree of Circular Polarization

There are some products of e, b and k̂ not defined above, including e · e, e · b⋆, e ∧ e⋆.

These are all related, and allow us to define a degree of circular polarization.

Consider e∧e⋆: the vector is pure imaginary, since it is equal to minus its complex conjugate.

Both vectors lie in the plane perpendicular to k̂, so the vector product lies along k̂.

The magnitude is less than unity:

(e ∧ e⋆) · (e⋆ ∧ e) = 1 − e · e e⋆ · e⋆ = 1 − |e · e|2.
We can therefore write e ∧ e⋆ = −iη k̂ where η is real and −1 ≤ η ≤ 1.

The other products are then related:

e · b⋆ = e · (k̂ ∧ e⋆) = k̂ · (e⋆ ∧ e) = iη

b ∧ b⋆ = (k̂ ∧ e) ∧ b⋆ = e(k̂ · b⋆) − k̂(e · b⋆) = −iη k̂

For the cases considered above:

Linearly Polarized: η = 0;

LH Circularly Polarized: η = ie⋆ · b = i
2 (x̂− iŷ) · (−ix̂ + ŷ) = 1;

RH Circularly Polarized: η = −1;

Arbitrary Elliptical Polarization above: η = −120/169.

We define η to be the degree of circular polarization.
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Finite Plane Wave
Consider a coherent beam of radiation in the z direction

E = EEEE(r) ei(kz−ωt) + c.c. B = BBBB(r) ei(kz−ωt) + c.c.

where the complex vectors EEEE and BBBB vary in the XY plane with

length scale L ≫ λ. The wave equation shows that the varia-

tion in the z direction is even slower:
(

k2 − ω2

c2

)

EEEE +

(

2ik
∂EEEE
∂z

+ ∇2EEEE
)

= 0.

The second term is ∼ (1/kL)2 w.r.t the first. So EEEE ≈ EEEE (0)(x, y) satisfies the wave eq’n to 1st

order in a region ∼ L in all directions. However, the error in M1 and M2 is 1st order:

∇ · E =
(

ik · EEEE (0) + ∇ · EEEE (0)
)

exp i(kz − ωt) + c.c.

To correct it we add small longitudinal terms: EEEE = EEEE(0) + EEEE(1), BBBB = BBBB(0) + BBBB(1) where

EEEE (1) =
i

k
ẑ ∇ · EEEE(0) and similarly BBBB(1) =

i

k
ẑ ∇ · BBBB(0).

This also corrects the first-order error in M3 & M4 if k̂ ∧ EEEE = cBBBB and ck̂ ∧ BBBB = −EEEE .

These ∼ 1/kL terms in EEEE and BBBB lead to additional terms in the transport properties.
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Solutions to the Wave Equations

The inhomogeneous wave equation (or wave equation with sources) has a Green function so-

lution similar to that for Poisson’s equation.

Consider the wave equation for Φ:

1

c2

∂2Φ

∂t2
−∇2Φ =

ρ(r, t)

ǫ0

The Green function will give the solution for a point charge at r′ which only exists for an in-

stant at t′; the full solution is then obtained by integrating over r′ and t′.

1

c2

∂2G

∂t2
−∇2G =

δ(r− r′)δ(t − t′)

ǫ0

This has two solutions which tend to zero as r → ∞:

G+ =
δ
(

t′ − t + |r−r
′|

c

)

4πǫ0|r− r′| G− =
δ
(

t′ − t − |r−r
′|

c

)

4πǫ0|r− r′|

These represent outgoing (G+) and incoming (G−) spherical

pulses diverging from or converging to r′, t′.
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Advanced and Retarded Potentials

These solutions represent different physical situations:

G+ represents a source distribution generating Φ and radiat-

ing it to future times;

G− represents an incoming Φ precisely chosen to be absorbed

by the ‘source’ distribution.

Choosing the retarded potential G+ and carrying out the t′

integral we find:

Φ(r, t) =
1

4πǫ0

∫

[ρ(r′, t′)]t′=t−|r−r
′|/c

|r− r′| d3r′

A(r, t) =
µ0

4π

∫

[J(r′, t′)]t′=t−|r−r
′|/c

|r− r′| d3r′.

t′ is known as the retarded time.

These reduce to the earlier results when ρ or J are time-independent.
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Radiation by sources

We shall consider a localised distribution of charge density ρ and current density J which os-

cillates with angular frequency ω:

J(r, t) = JJJJ (r)e−iωt + c.c. ρ(r, t) = ρ̃(r)e−iωt + c.c.

−∂ρ

∂t
= ∇ · J hence iωρ̃(r) = ∇ · JJJJ .

The potentials AAAAe−iωt and ϕe−iωt are then given by the retarded Green function:

AAAA(r) =

∫ JJJJ (r′)eikR

4πǫ0c2R
d3r′ where R = |r− r′|, k =

ω

c

The scalar potential is related to AAAA by the Lorentz gauge condition
iω

c2
ϕ = ∇ · AAAA.

There are two length scales in this problem: the source size a and the wavelength 2π/k.

We shall consider sources much smaller than a wavelength, ka ≪ 1, and find the fields at

large distances, a ≪ r. (But note: can still have kr ≪ 1 or kr ≫ 1.) Thus R ≈ r − r̂ · r′.
We can then expand in a power series in r′, retaining only the first order corrections:

eikR

R
=

eikr

r

reik(R−r)

R
≈ eikr

r

(

1 +
r · r′(1 − ikr)

r2

)
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Electric Dipole Radiation I

Retaining just the lowest term gives the electric dipole approximation:

AAAA(r) =
eikr

4πǫ0c2r

∫

JJJJ (r′) d3r′.

The volume-integrated current represents nett charge flow in the source, and is in fact the

rate of change of the electric dipole moment — hence the name.

Consider the tensor Jir
′
j and take the divergence with the i index:

∂Jir
′
j

∂r′i
= r′j∇ · JJJJ + Jiδij = r′ ∇ · JJJJ + JJJJ .

The integrand in AAAA is thus part of a divergence, which integrates to a surface integral over a

surface outside the source. Thus the divergence integrates to zero, leaving

∫

JJJJ (r′) d3r′ = −
∫

r′∇ · JJJJ (r′) d3r′ = −iω

∫

r′ρ̃ d3r′ = −iωPPPP .

where the electric dipole of the source is given by p = PPPPe−iωt+c.c.
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Electric Dipole Radiation II

Thus the electric dipole potentials are given by

AAAA(r) =
−iωPPPP eikr

4πǫ0c2r
ϕ =

−ic2

ω
∇ · AAAA =

PPPP · r eikr

4πǫ0r3

(

1 − ikr
)

The fields are quite complicated.

In the near zone kr ≪ 1 the dominant term in the potential is ϕ ≈ PPPP · r/4πǫ0r
3, which is a

dipole potential, and gives a typical dipole E field.

In the far zone kr ≫ 1 the fields fall off as 1/r, and are orthogonal to each other and to the

radius vector.

EEEE =
k2(PPPP − PPPP · r̂ r̂) eikr

4πǫ0r
+

3PPPP · r̂ r̂− PPPP
4πǫ0r3

(1 − ikr) eikr

BBBB =
k2(r̂ ∧ PPPP) eikr

4πǫ0cr

(

1 − 1

ikr

)

.
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Magnetic Dipole Radiation I

Some sources have a symmetry such that the electric dipole is always zero.

We then need the first-order term neglected above:

AAAA(r) =
µ0(1 − ikr)eikr

4πr3

∫

r · r′JJJJ (r′) d3r′.

The integrand then involves the tensor Jir
′
j . The symmetric and antisymmetric parts of this

are best treated separately:

Jir
′
j =

1

2

(

Jir
′
j + Jjr

′
i

)

+
1

2

(

Jir
′
j − Jjr

′
i

)

The symmetric term gives the electric quadrupole radiation field, but we shall look only at the

antisymmetric magnetic dipole term.

The magnetic dipole is defined by m = MMMMe−iωt+ c.c., where MMMM =

∫

1

2
r′ ∧ JJJJ (r′) d3r′.

The integrand in AAAA involves

1

2

(

r · r′ JJJJ (r′) − r · JJJJ (r′) r′
)

=

(

1

2
r′ ∧ JJJJ (r′)

)

∧ r

which integrates to MMMM∧ r.
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Magnetic Dipole Radiation II

Thus the magnetic dipole potentials are given by

AAAA(r) =
µ0

4π

MMMM∧ r eikr

r3
(1 − ikr) ϕ(r) = 0

The MMMM∧ r/r3 factor is a typical magnetic dipole vector potential, so that the near-zone fields

are those of a magnetic dipole.

In the far zone we have

BBBB =
k2µ0 r̂ ∧ (MMMM∧ r̂) eikr

4πr
EEEE =

k2µ0c (MMMM∧ r̂) eikr

4πr

This is the dual of the electric dipole solution, with E → cB, B → −E/c and PPPP/ǫ0 → µ0cMMMM.
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Liénard-Wiechert Potentials

For a point charge q in arbitrary motion we can obtain an explicit form for the potentials.

The result is not quite what you might expect . . .

At time t the charge is at rq(t); thus we have

ρ(r′, t′) = qδ(r′ − rq(t
′)) and J(r′, t′) = qvδ(r′ − rq(t

′)).

Putting ρ into the integral with G+ we obtain

Φ(r, t) =
q

4πǫ0

∫ δ(r′ − rq(t
′)) δ

(

t′ − t + |r−r
′|

c

)

|r− r′| d3r′ dt′

We do the integrals in the reverse order as compared with the derivation of the retarded po-

tentials — we do the spatial integrals first. This just has the effect of replacing r′ with rq(t
′):

Φ(r, t) =
q

4πǫ0

∫ δ
(

t′ − t +
|r−rq(t′)|

c

)

|r− rq(t′)|
dt′

The t′ integral is of the form

∫

h(t′)δ(f(t′)) dt′ =
h(t′)

|df/dt′|

∣

∣

∣

∣

f(t′)=0
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The derivative of the δ-function argument is

d

dt′

(

t′ − t +

√

(r− rq(t′)) · (r− rq(t′))

c

)

= 1 − (r− rq(t
′)) · v(t′)

c|r− rq(t′)|
.

and we must evaluate this at the retarded time t′ = t − |r−rq(t′)|
c .

Introducing the unit vector from the retarded position of the charge towards r

n(t′) = (r− rq(t
′))/|r− rq(t

′)| the potentials can be written

Φ(r, t) =
1

4πǫ0

q

|r− rq(t′)|(1 − v(t′) · n/c)

A(r, t) =
µ0

4π

qv(t′)

|r− rq(t′)|(1 − v(t′) · n/c)

This differs from our expectation by the (1−v ·n/c) factor, which we can understand in terms

of the time taken for the retarded Green function to sweep over the charge.

Feynman gives a very elegant form for the derived fields (Lectures I 28-2 and II 21-1 – 21-11).
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