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Mostly Dipoles

1) By taking the appropriate limit show that the torque on a point dipole in a uniform
electric field E is Γ = p ∧ E. (The torque of a force F applied at r is r ∧ F.) By
considering the work done δU = −Γ · δφφφ in rotating the dipole against this torque through
an infinitesimal angle δφφφ, show that this can be derived from the potential energy U =
−p · E. (Note that the change in p when it is rotated is δp = δφφφ ∧ p.)

2) (Mods Physics 3 1994 question 2) Write down an expression for the electrostatic
potential at a distance r from a point charge q.

An electrostatic quadrupole consists of a charge +2q at the origin and charges −q on
the z axis at the two points z = ±a. Using polar coordinates, r and θ, where θ defines the
angle between r and the z axis, expand the potential of these charges in a power series in
a/r. Show that in the limit when r ≫ a, the potential may be expressed as

Φ =
A

r3

(

3 cos2 θ − 1
)

,

and find A.
Sketch the θ dependence of the radial component of the electric field Er, and identify

the surfaces on which Er is zero.

3) (Mods Mathematical Physics 1993 question 6) Find the general solution of Laplace’s
equation in spherical polar co-ordinates in the absence of φ dependence, expressing the
result in terms of the Legendre polynomials y = Pn(µ) (µ = cos θ) that satisfy the equation

(1 − µ2)
d2y

dµ2
− 2µ

dy

dµ
+ n(n + 1)y = 0.

Solutions finite at µ = ±1 exist for n equal to a positive integer or zero, and Pn(1) = 1.
Find the electrostatic potential of a thin uniformly charged ring of radius a and total

charge Q along a line perpendicular to the plane of the ring, and passing through its centre.
Hence obtain the solution for all space.

4) Find the electrostatic potential Φ and the electric field Er due to a charge Q uniformly
distributed through a sphere of radius a. Show that the electrostatic energy of the charge
distribution is

3

5

Q2

4πǫ0a
.

(There are several ways of doing this. You could solve Poisson’s equation directly assuming
spherical symmetry, with boundary conditions Φ(0) finite, Φ and Er continuous at r = a,
Φ → 0 as r → ∞. You could use Gauss’s law for Er directly, and find Φ by integration.
You could find the potential of a spherical shell and integrate over shells (this is essentially
a Green function approach). Similarly the last part can be found by integrating either
(1/2)ρΦ or (1/2)ǫ0E

2.)

5) Write down integral expressions for A and B due to a circular current loop radius a
in the XY -plane. Carry out the B integration on the z-axis to find

Bz =
µ0

2π

Iπa2

(z2 + a2)3/2
.



In the limit r ≫ a show that the A integral becomes (to order (a/r)2)

A(r) =
µ0I

4πr

∫

(

1 +
r · s

r2

)

ds.

Show that the first term imtegrates to zero, and that the first non-zero term is

A =
µ0

4π

m ∧ r

r3

where the magnetic dipole of the loop is given by

m = I

∫

1

2
s ∧ ds.

You might find it helpful to know that

I

∫

si dsj = ǫijkmk.


