Vectors and Vector Calculus

1. Vectors

There are two types of binary product, the scalar and vector products.

a) Scalar Product $\mathbf{a} \cdot \mathbf{b}$. This is defined by $\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z b_z$.

Show that $\mathbf{a} \cdot \mathbf{b}$ is invariant under a rotation of co-ordinates $\mathbf{a} \to \mathbf{a}' = \mathbf{R} \mathbf{a}$ where $\mathbf{R}^T \mathbf{R} = \mathbf{I}$.

b) Vector Product $\mathbf{a} \wedge \mathbf{b}$. This is defined by $(\mathbf{a} \wedge \mathbf{b})_i = \epsilon_{ijk} a_j b_k$.

Show that under a rotation $\mathbf{a}' \wedge \mathbf{b}' = \mathbf{R}(\mathbf{a} \wedge \mathbf{b})$ if $\det \mathbf{R} = 1$. (Note that $\epsilon_{ijk} \mathbf{R}_{ii'} \mathbf{R}_{jj'} \mathbf{R}_{kk'} = \epsilon_{i'j'k'} \det \mathbf{R}$.)

Show that $\mathbf{a} \wedge \mathbf{b} = -\mathbf{b} \wedge \mathbf{a}$ provided \mathbf{a} and \mathbf{b} commute.

There are two types of triple product.

c) Scalar Triple Product $a \cdot b \wedge c$.

Show that $\mathbf{a} \cdot \mathbf{b} \wedge \mathbf{c} = \mathbf{a} \wedge \mathbf{b} \cdot \mathbf{c}$, and that $\mathbf{a} \cdot \mathbf{b} \wedge \mathbf{c} = \mathbf{b} \cdot \mathbf{c} \wedge \mathbf{a}$ if all three vectors commute.

d) Vector Triple Product $\mathbf{a} \wedge (\mathbf{b} \wedge \mathbf{c}) = \mathbf{b}(\mathbf{a} \cdot \mathbf{c}) - \mathbf{c}(\mathbf{a} \cdot \mathbf{b})$, provided all vectors commute. Show that $\mathbf{a} \wedge (\mathbf{b} \wedge \mathbf{c}) \neq (\mathbf{a} \wedge \mathbf{b}) \wedge \mathbf{c}$.

There are quite a lot of quadruple products, which can be handled by treating them as a product of two binary products or a vector and a triple product. In e) – g) we assume all vectors commute.

- e) Show that $(\mathbf{a} \wedge \mathbf{b}) \cdot (\mathbf{c} \wedge \mathbf{d}) = \mathbf{a} \cdot \mathbf{c} \ \mathbf{b} \cdot \mathbf{d} \mathbf{a} \cdot \mathbf{d} \ \mathbf{b} \cdot \mathbf{c}$.
- f) By considering two ways of splitting up $(\mathbf{a} \wedge \mathbf{b}) \wedge (\mathbf{c} \wedge \mathbf{d})$ prove $\mathbf{c}(\mathbf{a} \wedge \mathbf{b} \cdot \mathbf{d}) \mathbf{d}(\mathbf{a} \wedge \mathbf{b} \cdot \mathbf{c}) = \mathbf{b}(\mathbf{a} \cdot \mathbf{c} \wedge \mathbf{d}) \mathbf{a}(\mathbf{b} \cdot \mathbf{c} \wedge \mathbf{d})$.
- **g)** By considering two ways of splitting up $\mathbf{a} \wedge (\mathbf{b} \wedge (\mathbf{c} \wedge \mathbf{d}))$ prove $\mathbf{a} \wedge \mathbf{c} \ \mathbf{b} \cdot \mathbf{d} \mathbf{a} \wedge \mathbf{d} \ \mathbf{b} \cdot \mathbf{c} = \mathbf{b}(\mathbf{a} \cdot \mathbf{c} \wedge \mathbf{d}) \mathbf{c} \wedge \mathbf{d} \ \mathbf{a} \cdot \mathbf{b}$.

2. Gradients

In the following, $\phi(\mathbf{r})$ is an arbitrary scalar function of \mathbf{r} , and f(r) is an arbitrary function of r, while \mathbf{p} is a constant vector. Prove the following.

- a) $\nabla (\phi_1 \phi_2) = \phi_1 \nabla \phi_2 + \phi_2 \nabla \phi_1$.
- b) $\nabla (\mathbf{p} \cdot \mathbf{r}) = \mathbf{p}$.
- c) $\nabla f(r) = (\mathbf{r}/r) \frac{df}{dr} = \hat{\mathbf{r}} \frac{df}{dr}$.
- **d)** Combine a) c):

$$\nabla \left(\frac{\mathbf{p} \cdot \mathbf{r}}{r^3} \right) = \frac{\mathbf{p}}{r^3} - \frac{3\mathbf{p} \cdot \mathbf{r} \cdot \mathbf{r}}{r^5}.$$

3. Divergences and Curls

In the following $\mathbf{A}(\mathbf{r})$ is an arbitrary vector field and \mathbf{p} is a constant vector. Prove the following.

- a) $\nabla \cdot (\mathbf{A}\phi) = \mathbf{A} \cdot (\nabla \phi) + \phi \nabla \cdot \mathbf{A}$.
- b) $\nabla \cdot \mathbf{r} = 3$
- c) $\nabla \wedge (\mathbf{p} \wedge \mathbf{r}) = 2\mathbf{p}$.
- d) $\nabla \wedge (\mathbf{A}\phi) = \phi \nabla \wedge \mathbf{A} \mathbf{A} \wedge \nabla \phi$.
- e) Combine a) d):

$$\nabla \wedge \left(\frac{\mathbf{p} \wedge \mathbf{r}}{r^3}\right) = -\frac{\mathbf{p}}{r^3} + \frac{3\mathbf{p} \cdot \mathbf{r} \, \mathbf{r}}{r^5}.$$