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We consider light scattering from ultracold quantum gas in optical lattices into a cavity. The

measurement of photons leaking out of the cavity enables a quantum nondemolition access to various

atomic variables. The time resolved light detection projects the motional state to various atom-number

squeezed and macroscopic superposition states that strongly depend on the geometry. Modifications of the

atomic and light properties at a single quantum trajectory are demonstrated. The quantum structure of final

states can be revealed by further observations of the same sample.
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Quantum gases in optical lattices are of fundamental
interest, as they provide an excellent test bed to study
multipartite entanglement and many-body states, useful
in condensed matter and quantum information [1].
Usually, the role of light is reduced to a classical auxiliary
tool for creating intriguing atomic states. In contrast, here
we consider an ultimate quantum level, where quantum
natures of both matter and light play a key role. This
emerging level joining quantum optics [especially cavity
quantum electrodynamics (QED)] and quantum gases,
only recently became achievable and stimulated novel
experimental [2] and theoretical studies [3–5].

We show that the atom-light entanglement enriches
physics and enables the quantum nondemolition (QND)
measurement and manipulation of atomic states.
Observing light allows us to prepare different types of
atom-number squeezed and macroscopic superposition
states. Note that the type of many-body states depends on
the optical geometry. The quantum structure of final states
can be revealed by further observations of the same sam-
ple, which is an advantage over destructive schemes [1,6].

As we consider off-resonant interaction, independent of
a particle level structure, our model might be also applied
to other phenomena in molecular physics [7], where the
molecule number fluctuations are important, and solid-
state systems as semiconductors [Bose-Einstein conden-
sates (BEC) of exciton-polaritons] [8] and superconductors
[9] (circuit cavity QED). Besides, the squeezed and macro-
scopic superposition states find applications in quantum
interferometry and metrology [10].

Model.—We consider (cf. Fig. 1)N ultracold atoms in an
optical lattice of M sites formed by strong off-resonant
laser beams. A region of K � M sites is also illuminated
by a weak probe, which is scattered into a cavity. We will
investigate how the measurement of photons leaking from
the cavity will affect the atomic quantum state.

The theory is based on the generalized Bose-Hubbard
model taking into account light quantization [3,5]. In con-

trast to Ref. [5], we assume dynamics and measurement of
the cavity mode is faster than atomic tunneling [3,4]. Thus,
neglecting the influence of tunneling on light, we get the
effective many-body Hamiltonian:

H ¼ @ð!1 þU11D̂11Þay1a1 þ @U10ðD̂�
10a

�
0a1 þ D̂10a0a

y
1 Þ

� i@ð��a1 � �ay1 Þ; (1)

where a1 is the cavity-mode annihilation operator and a0 is
the c-number probe amplitude of the frequencies !1;p and

spatial mode functions u1;0ðrÞ. Ulm ¼ glgm=�a (l, m ¼ 0,
1), where g1;0 are the atom-light coupling constants, �a ¼
!1 �!a is the cavity-atom detuning, � is the probe
through a mirror at !p. We assumed the probe-cavity

detuning �p ¼ !p �!1 � �a. The operators D̂lm ¼P
K
j¼1 u

�
l ðrjÞumðrjÞn̂j sum contributions from all illumi-

nated sites with the atom-number operators n̂j at the posi-
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FIG. 1 (color online). Setup. A lattice is illuminated by the
transverse probe a0 and probe through a mirror �. The photo-
detector measures photons leaking the cavity. Because of the
quantum back-action, the light measurement leads to the modi-
fication of the atomic quantum state.
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tion rj. Here, the rotating-wave approximation and adia-

batic elimination of the exited state were used.
The first term in Eq. (1) describes the atom-induced shift

of the cavity resonance. The second one reflects scattering
(diffraction) of the probe into a cavity. For a quantum gas
the frequency shift and probe-cavity coupling coefficient
are operators, which leads to different light scattering from
various atomic quantum states [3].

The Hamiltonian (1) describes QND measurements of

variables related to D̂lm measuring the photon number

ay1a1 [11]. Note, that one has a QND access to various

many-body variables, as D̂lm strongly depend on the lattice
and light geometry via u0;1ðrÞ. This is an advantage of the

lattice compared to single- or double-well setups, where
the photon measurement back-action was considered [12].
Moreover, such a geometrical approach can be extended to
other quantum arrays, e.g., ion strings [13].

For example, D̂11 can reduce to the operator N̂K of the
atom number at K sites [3]. If the probe and cavity modes
are coupled at a diffraction maximum (Bragg angle), i.e.,
all atoms scatter light in phase, the probe-cavity coupling is

maximized, D̂10 ¼ N̂K. If they are coupled at a diffraction
minimum, i.e., neighboring atoms scatter out of phase,

D̂10 ¼ P
K
j¼1ð�1Þjþ1n̂j is the operator of the number dif-

ference between odd and even sites. Thus, the atom num-
ber as well as number difference can be nondestructively
measured. Note, that those are just two of many examples
of how a QND variable, and thus the projected state, can be
chosen by the geometry.

Measurement back-action.—The expression for the ini-
tial motional state of atoms reads

j�ð0Þi ¼ X

q

c0qjq1; . . . ; qMi; (2)

which is a superposition of Fock states reflecting all pos-
sible classical configurations q ¼ fq1; . . . ; qMg of N atoms
at M sites, where qj is the atom number at the site j. This

superposition displays the uncertainty principle, stating
that even a single atom can be delocalized in space.

While interacting, the light and atoms get entangled.
Quantum mechanics predicts that measurements of one
subsystem (light) provides conditional information about,
or affects, another one (gas). We will show, how the atomic
uncertainty is affected by the light detection.

We use the open system approach [14] for counting
photons leaking the cavity of decay rate �. When a photon
is detected, the jump operator is applied to the state:
j�cðtÞi ! a1j�cðtÞi. Between the counts, the system

evolves with a non-Hermitian Hamiltonian H � i@�ay1a1.
Such an evolution gives a quantum trajectory for j�cðtÞi
conditioned on the detection of photons at times t1; t2; . . . .

It is known [15] that, if a coherent probe illuminates a
classical atomic configuration in a cavity, the light state is
proportional to a coherent state j�qðtÞi with �qðtÞ given by

the classical Maxwell’s equation. Thanks to the approxi-
mation, where the tunneling does not affect light, we can
get a simple analytical solution of the coupled light-matter
dynamics. Each atomic Fock state in Eq. (2) will be
correlated with a coherent light state with parameters given
only by the corresponding configuration q: j�cðtÞi ¼P

qc
0
q exp½�qðtÞ�jq1; . . . ; qMij�qðtÞi=FðtÞ, where FðtÞ

gives the normalization. So, the problem finding j�cðtÞi
reduces to finding �qðtÞ, �qðtÞ for all classical configura-
tions forming the initial j�ð0Þi. Although a solution is
available for any t, we present it for t > 1=�, when the
steady state is achieved in all �qðtÞ, and assuming the first

photon was detected at t1 > 1=�.
Because of the steady state in all �qðtÞ, the solution is

independent of the detection times and after m counts is

j�cðm; tÞi ¼ 1

FðtÞ
X

q

�m
q e

�qðtÞc0qjq1; . . . ; qMij�qi; (3)

�q ¼ �� iU10a0D
q
10

iðU11D
q
11 � �pÞ þ �

; (4)

�qðtÞ ¼ �j�qj2�tþ ð���
q � iU10a0D

q
10�

�
q � c:c:Þt=2;

(5)

where Dq
lm ¼ P

K
j¼1 u

�
l ðrjÞumðrjÞqj is a realization of D̂lm

at fq1; . . . qMg; a0, �, and �q all oscillating in steady state

at !p were replaced by their constant amplitudes.

As we see, each light amplitude �qðtÞ, Eq. (4), is given
by a Lorentzian corresponding to classical optics. Equa-
tion (3) shows that the probability of finding an atom con-
figuration q, pqðm; tÞ ¼ j�qj2m expð�2j�qj2�tÞjc0qj2=F2,

changes in time due to photodetection. This demonstrates
the back action of the light measurement on the atomic
state.
In the following, we will show consequences of Eq. (3)

for two cases, where only one probe (a0 or �) exists. For
transverse probing (a0 � 0Þ, we also neglect the mode
shift, assuming U11D

q
11 � � or �p. Thus, in both ex-

amples, �q (4) depends on the configuration q only via a

single statistical quantity now called z: z ¼ Dq
11 for cavity

probing (� � 0), and z ¼ Dq
10 for transverse probing.

From Eq. (3) we can determine the probability distribu-
tion of finding a given z after time t as

pðz;m; tÞ ¼ j�zj2me�2j�zj2�tp0ðzÞ=F2; (6)

where the initial distribution p0ðzÞ ¼ P
q0 jc0q0 j2, such that

all configurations q0 have the same z; F2 ¼P
zj�zj2m expð�2j�zj2�tÞp0ðzÞ provides normalization.
Transverse probing at diffraction maximum.—As was

mentioned, at the Bragg angle, D̂10 ¼ N̂K is the operator
of the atom number at K sites. So, z varies from 0 to N
reflecting possibilities to find any atom number at K sites.
The light amplitudes (4) �z ¼ Cz are proportional to z,
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C ¼ iU10a0=ði�p � �Þ. The probability (6) reads

pðz;m; tÞ ¼ z2me�z2�p0ðzÞ= ~F2 (7)

with a characteristic time � ¼ 2jCj2�t.
When time progresses, both m and � increase with a

probabilistic relation between them. The quantum
Monte Carlo method [14] establishes such a relation,
thus giving a trajectory. Note, that thanks to the simple
analytical solution (3), it gets extremely simple. Each step
consists of the calculation of the photon number in the state
given by Eq. (3) and comparing it with a random number
generated in advance, thus, deciding whether the detection
or no-count process has happened.

If the initial atom number z at K sites is uncertain, p0ðzÞ
is broad [for the superfluid (SF) it is nearly Gaussian [3]],
and Eq. (7) shows that pðz;m; tÞ is strongly modified dur-
ing the measurement. The function z2m expð�z2�Þ has its
maximum at z1 ¼

ffiffiffiffiffiffiffiffiffiffi
m=�

p
and full width at half maximum

(FWHM) �z � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln2=�

p
(for �z � z1). Thus, multiplying

p0ðzÞ by this function will shrink the distribution pðz;m; tÞ
to a narrow peak at z1 with the width decreasing in time
(Fig. 2).

This describes the projection of the atomic quantum
state to a final state with a squeezed atom number at K
sites (a Fock state jz1; N � z1i with z1 atoms at K sites and
N � z1 atoms at M� K sites). When �z < 1, the final
collapse is even faster than

ffiffiffi
�

p
, due to the discreteness of

pðz; m; tÞ. Measuring the photon number m and time t, one
can determine z1 of a quantum trajectory.

In contrast to recent results in spin squeezing [16], which
can be also obtained for thermal atoms [17], in our work,
the quantum nature of ultracold atoms is crucial, as we deal
with the atom-number fluctuations appearing due to the
delocalization of ultracold atoms in space.

After the distribution shrinks to a single z1, the light
collapses to a single coherent state j�z1i, and the atoms and

light get disentangled with a factorized state

j�ci ¼ jz1; N � z1ij�z1i: (8)

So, light statistics evolves from super Poissonian to
Poissonian. The conditioned (i.e., at a single trajectory)

cavity photon number hay1a1icðtÞ ¼ jCj2 PN
z¼0 z

2pðz; m; tÞ
is given by the second moment of pðz;m; tÞ. Its dynamics
[very similar to hzic in Fig. 2(c)] has jumps, even though all

�zðtÞ are continuous. In the no-count process, hay1a1ic
decreases, while at one count it jumps upwards, which is
a signature of super-Poissonian statistics. Finally, it re-

duces to hay1a1ic ¼ jCj2z21, reflecting a direct correspon-

dence between the final atom number and cavity photon
number, which is useful for experiments.
Even the final Fock state still contains the atom-atom

entanglement, as many components jq1; . . . ; qMi can have
the same z1. For example, the SF state can be represented

as jSFiN;M ¼ P
z

ffiffiffiffiffiffi
Bz

p jSFiz;KjSFiN�z;M�K (Bz’s are bino-

mial coefficients). After the measurement, it ends up in
jSFiz1;KjSFiN�z1;M�K, i.e., the product of two uncorrelated

superfluids.
Our measurement scheme determines (by squeezing) the

atom number at a particular lattice region and projects the
initial atomic state to some subspace. However, the atom
number at different regions keeps quantum uncertainty. So,
the quantum structure of the final state can be revealed in a
further optical or matter-wave experiment. Thanks to the
lattice geometry, one can change the illuminated region,
and further study the measurement-induced collapse of the
state in the remaining subspace.
Even in matter-wave experiments [1], the product of SFs

will look different from the initial SF: the atoms from
different regions will not interfere on average. Note, that
we did not specify how K sites were selected. One can
illuminate a continuous region. However, one can illumi-
nate each second site by choosing the probe wavelength
twice as a lattice period and get number squeezing at odd
and even sites. In this way, one gets a measurement-
prepared product of two SFs ‘‘loaded’’ at sites one by
one (e.g. atoms at odd sites belong to one SF, while at
even sites to another). While the initial SF shows the long-

range coherence hbyi bji with the lattice period, the pre-

pared state will demonstrate the doubled period in hbyi bji
(bj is the atom annihilation operator).

Transverse probing at diffraction minimum.—In contrast
to classical atoms, quantum gases scatter light even in
diffraction minima [3]. Here z ¼ Dq

10 ¼
P

M
j¼1ð�1Þjþ1qj

is the atom number difference between odd and even sites,
varying from�N to N with a step 2 (we assumed K ¼ M).
Equation (7) keeps its form with a new meaning of z and
p0ðzÞ [for the SF, new p0ðzÞ is nearly a Gaussian centered

at z ¼ 0 and the width
ffiffiffiffi
N

p
[3]].
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FIG. 2 (color online). Photodetections at diffraction maxi-
mum. (a) Shrinking atom-number distribution at different times
� ¼ 0, 0.005, 0.018, 0.03, 0.05, 0.5 (A–F); (b) decreasing width
�z; (c) stabilizing mean atom number hzic. Initial state: SF, N ¼
100 atoms, K ¼ M=2 ¼ 50 illuminated sites.
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The striking difference from the diffraction maximum is
that our measurement (7) is not sensitive to the sign of z,
while the amplitudes �z ¼ Cz are. So, the final state is a

macroscopic superposition of two Fock states with z1;2 ¼
� ffiffiffiffiffiffiffiffiffiffi

m=�
p

and light amplitudes: �z2 ¼ ��z1 ,

j�ci ¼ ðjz1ij�z1i þ ð�1Þmj � z1ij � �z1iÞ=
ffiffiffi
2

p
: (9)

Figure 3 shows the collapse to a doublet probability
pð�z1; m; tÞ and the photon-number trajectory, where up-
ward jumps and no-count decreases can be seen.

In contrast to a maximum, even in the final state, the
light and matter are not disentangled. Moreover, to keep
the purity of the state, one should know precisely the
number of detected photons, because of the sign flip in
Eq. (9). This reflects the fragility of macroscopic superpo-
sition states with respect to the decoherence.

As a result, the measurement-based state preparation at
the diffraction maximum (8) is much more robust.

For probing through a mirror (� � 0, a0 ¼ 0), in con-
trast to the transverse probing, the probability distribution
can collapse both to a singlet and doublet. Importantly,
here the superposition state can be more robust than (9).
This is due to a smaller phase jump between two Fock
states, which can be obtained from Eqs. (3)–(5).

Deviations from our ideal setup can slightly modify the
results; i.e., the mode profiles will lead, instead of the atom

number, to more general variables given by D̂lm.
In summary, we showed that using the light-matter en-

tanglement in ultracold gases enables QND measurements
of different atomic variables and creation of specific
atomic states. The state type is determined by the optical
geometry. Our model can be generalized to other quantum
arrays. Cavity QED with quantum gases can operate with

atom numbers from millions to one [18]. Thanks to recent
experimental breakthroughs [2], preparing various kinds of
atom-number squeezing is already doable, and creation of
the superposition states with, at least, a small particle
number [10] may become practical.
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FIG. 3 (color online). Photodetections at diffraction minimum.
(a) Shrinking distribution of the atom-number difference for
various times � ¼ 0, 0.02, 0.03, 0.17, 0.65 (A–E). The doublet
corresponds to a macroscopic superposition state. (b) Relative
photon number hay1a1ic=jCj2 with quantum jumps. Initial state:

SF, N ¼ 100 atoms, K ¼ M ¼ 100 sites.
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