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Normal Modes and Waves
Christopher Palmer

2019 Problem Set

1 Normal Modes

(1.1) Standard Solution Method. Two identical pendula each of length l and with bobs of
mass m are free to oscillate in the same plane. The bobs are joined by a massless spring with
a small spring constant k, such that the tension in the spring is k times its extension.

(a) Show that the motion of the two bobs is governed by the equations

m
d2x1

dt2
= −mg

l
x1 + k(x2 − x1) (1)

and

m
d2x2

dt2
= −mg

l
x2 + k(x1 − x2) (2)

(b) Write these equations in the form

m
d2x

dt2
= −Kx

and write down the K matrix.

(c) Substitute a normal mode solution x = a f(t) and show that this satisfies the equation of
motion provided a is an eigenvector of K. Find and solve the corresponding equation for
f(t).

(d) How many eigenvectors does K have? Find them and write down a general solution for the
problem.

(e) At t = 0, both pendula are at rest, with x1 = A and x2 = A. Describe the subsequent
motion of the two pendula.

(1.2) Fitting Initial Conditions. Consider the two coupled pendula of question 1.1.

(a) At t = 0, both pendula are at rest, with x1 = A and x2 = 0. They are then released.
Describe the subsequent motion of the system. If k/m = 0.105g/l, show that

x1 = A cos ω̄t cos ∆t

and

x2 = A sin ω̄t sin ∆t

where ω̄ = 1.05
√
g/l and ∆ = 0.05

√
g/l.

Sketch x1 and x2, and note that the oscillations are transferred from the first pendulum to
the second and back. Approximately how many oscillations does the second pendulum have
before the first pendulum is oscillating again with its initial amplitude?

(b) State a different set of initial conditions such that the subsequent motion of the pendula
corresponds to that of a normal mode.

(c) At t = 0, both bobs are at their equilibrium positions: the first is stationary but the second
is given an initial velocity v0. Show that subsequently

x =
v0

2ω1

(
1
1

)
sinω1t+

v0
2ω2

(
−1
1

)
sinω2t

(d) For the initial conditions of part (c), and with k/m = 0.105g/l, sketch the subsequent
positions and velocities of the two bobs.
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Figure 1: Example for Question 1.3

(1.3) Non-trivial Eigenvectors. Two equal masses m are connected as shown in Figure 1 with
two identical massless springs, of spring constant k.

(a) Considering only motion in the vertical direction, obtain the differential equations for the
displacements of the two masses from their equilibrium positions. Show that the angular
frequencies of the normal modes are given by ω2

i = qi(k/m) where q1 = [3 −
√

5]/2 and
q2 = [3 +

√
5]/2

(b) Find the corresponding eigenvectors.

(c) Why does the acceleration due to gravity not appear in these answers?

(1.4) Zero Eigenvalue. Two particles, each of mass m, are connected by a light spring of stiffness
k, and are free to slide along a frictionless horizontal track.

(a) Find the normal frequencies and eigenvectors of this system.

(b) Why does a zero-frequency mode appear in this problem? Write down the general solution.

(1.5) Energy in the equal mass case. The system of question 1.3 with equal springs (k1 =
k2 = k) (shown in Figure 1) is excited by pulling the lower mass down a distance 2a and
releasing from rest.

(a) Show that the initial condition is x(0) =

(
a
2a

)
.

(b) Show that the system energy is ka2.

(c) Find the energies in each of the normal modes. You can use the eigenvalues

κ1 = 2k[1− cos(π/5)] and κ2 = 2k[1− cos(3π/5)]

and normalised eigenvectors

c1 =
2√
5

(
sin(π/5)
sin(2π/5)

)
and c2 =

2√
5

(
sin(3π/5)
sin(6π/5)

)
.

However you should give the result numerically; otherwise it’s a complex and unilluminating
string of trig functions!

(1.6) Unequal mass case. In the coupled pendulum example of question 1 the two masses are
unequal, m1 and m2.

(a) Modify the equations of motion and write in matrix form using the same K matrix as before
and a mass matrix M which you should define.

(b) Solve the equations by finding the eigenvalues and eigenvectors of K with respect to the
metric M.

Version 22/2/2019



CWPP 2019 Normal Modes and Waves Problem Set 3

/\/\/\/\/\/\/\/\ /\/\/\/\/\/\/\/\ /\/\/\/\/\/\/\/\

k m k m k

Figure 2: Example for Question 1.7

(1.7) Transverse oscillations; transition to Waves. Consider transverse oscillations of the
system shown in Figure 2. The fixed side walls are separated by a distance 3l, and the two
masses divide the distance into three equal spaces of length l. The three springs are all
identical with natural length l0 � l, so that there is a equilibrium tension T0 in all three
springs.

(a) Show that small transverse displacements y1, y2 lead to extensions of the springs which are
quadratic expressions of the displacements. Hence argue that for suficiently small displace-
ments the dominant restoring force is the transverse component of the tension T0 .

(b) Hence show that the linear approximation to the equations of motion is

m
d2y

dt2
= −Ky where K =

(
2T0/l −T0/l
−T0/l 2T0/l

)
(c) Now consider a much larger system with total length (N + 1)l divided into equal sections

by N equal masses, with tension T in all springs. Deduce the form of the K matrix for this
case.

(d) Hence show that the general row (i 6= 1 or N) of the eigenvector equation Kc = κc is
ci+1 + ci−1 = (2−κl/T )ci, where ci denotes the i’th element of the vector c. Show that ci =
sin(iφ) satisfies this equation and show that κ must then be given by κ = (2T/l)(1− cosφ).
Show that this form also satisfies the i = 1 row of the equation, and that to satisfy the i = N
row of the equation we need φ = nπ/(N + 1) for integer n.

(e) Now consider very large N , and n � N . Define L = (N + 1)l as the total length of the
string, and kn = nπ/L as the rate of change of phase with distance along the string. Show
that κ ≈ Tk2nl/m. Hence deduce that for these low-n modes ωn and kn are related by
ω2
n/k

2
n = T l/m.

2 Waves I

(2.1) Standing and travelling waves.

(a) Outline the differences between a travelling wave and a standing wave.

(b) Convince yourself that y1 = A sin(kx − ωt) corresponds to a travelling wave. Which way
does it move and with what velocity? What are the amplitude a, wavelength λ, wavenumber
ν̄, wavevector, period T , frequency ν, and angular frequency of the wave?

(c) Show that y1 satisfies the wave equation

∂2y1
∂x2

=
1

c2
∂2y1
∂t2

provided that ω and k are suitably related.

(d) Write down a wave y2 of equal amplitude travelling in the opposite direction. Show that
y1 + y2 can be written in the form

y1 + y2 = f(x)g(t).

Convince yourself that this superposition of two travelling waves is a standing wave.
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(e) Show that the standing wave y = A sin(kx) sin(ωt) can be written as a superposition of two
travelling waves.

(2.2) Derivation of The Wave Equation for a string.

(a) A string of uniform linear density ρ is stretched to a tension T . If y(x, t) is the transverse
displacement of the string at position x and time t, show that

∂2y

∂x2
=

1

c2
∂2y

∂t2

where c2 = T/ρ.

(b) Show that the equation is linear and homogeneous, of the form Ly = 0 where L is a linear
differential operator.

(c) What does this imply for solutions of the equation?

(2.3) Solution by separation of variables. Transverse waves are excited on a string stretched
between two fixed points at x = 0 and x = L.

(a) Outline the solution of the wave equation using the method of separation of variables.
Explain carefully how the boundary conditions y(0, t) = 0 and y(L, t) = 0 determine the sign
of the separation constant.

(b) Show that there exist two classes of separated solutions which satisfy the wave equation and
the boundary conditions: y = sin(nπx/L) sin(nπct/L) and y = sin(nπx/L) cos(nπct/L) for
positive integer n. Hence write down a general solution for y.

(c) Show that this general solution is periodic in time and find the period.

(d) Suppose the string is plucked at its midpoint and released from rest at t = 0:

y(x, 0) =

 2ax/L for 0 ≤ x < L/2,
a for x = L/2
2a(L− x)/L for L/2 < x ≤ L.

Show that the solution must now be of the form

y(x, t) =
∑
n

An sin
(nπx
L

)
cos

(
nπct

L

)
where the coefficients An satisfy

y(x, 0) =
∑
n

An sin
(nπx
L

)
.

The An can be found by the method of Fourier Series, which is not on the first year maths
course (see optional question at end).

(e) Suppose instead that the initial conditions are y(x, 0) = 0 and yt(x, 0) = V (x), where yt
denotes ∂y/∂t. Write down the form of the solution in this case, and the equation from which
the coefficients can be determined.

(2.4) Fitting Initial Conditions. Suppose instead that the initial conditions for question 2.3 (c)
are y(x, 0) = sin(πx/L) + 2 sin(2πx/L) and yt(x, 0) = 0.

(a) Find an explicit expression for y(x, t).

(b) Make rough sketches of y(x, t) at the following times: t = 0, t = L/4c, t = L/2c, t = 3L/4c,
t = L/c.

Note that this solution is neither a standing wave (no fixed nodes) nor a travelling wave (no
net progression).

(2.5) Dispersion
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(a) What is meant by a dispersive medium and what is the dispersion relation? Define the
phase velocity vp = ω/k and the group velocity vg = ∂ω/∂k. Explain carefully what travels
at each velocity.

(b) Show that an alternative expression for vg is

vg = vp + k
∂vp
∂k

.

(c) Evaluate vp and vg as a functions of k for the following cases:

i. Long wavelength surface waves on water ω =
√
gk (where g is the acceleration due to

gravity).

ii. Short wavelength ripples on water ω =
√
σk3/ρ (where σ is the surface tension and ρ

the density).

iii. In the crossover region where both effects are important ω2 = gk + σk3/ρ.

iv. Guided electromagnetic waves in a waveguide (with a non-zero longitudinal component
of either E or B) ω2 = ω2

0 + c2k2 (where c is the speed of light).

(d) In the first two cases but not the other two you should have found vg = αvp, where the
constant α is different in the two cases. What type of dispersion relation leads to this result?

(e) In the fourth case you should have found vpvg = c2, so that either vp or vg is greater than
c. Which is it, and why does this not allow signalling faster than the speed of light?

(2.6) Stationary Phase or Group Velocity. In the long wavelength limit of question 2.5(c)i.,
vp and vg are decreasing functions of k, while in the short-wavelength limit of 2.5(c)ii. they
increase with k. Thus in the cross-over region of question 2.5(c)iii. both pass through minima.

(a) At the minimum of vp we have, using the result of question 2.5(b), vp = vg. Show this occurs
at k2 = gρ/σ. Verify this using the dispersive wavepacket plotter on the course web page.
(For the values used in the DWP this occurs at 364 m−1), and describe the propagation of a
wavepacket centred around this frequency (for example, kmin = 340 m−1, kmax = 390 m−1.
(Don’t forget that the length unit used in this section of the DWP is 10 cm.)

(b) The minimum of vg is more difficult to calculate algebraically: in fact it occurs at

k2 =
2
√

3− 3

3

gρ

σ

Verify this using the DWP. (Note that the displayed value of vg is evaluated for the centre
frequency of the wavepacket, so that it can be read out at steps of 5 m−1 in the cross-over
region by using appropriate combinations of kmin and kmax.) Around this frequency vg is
essentially constant, making the envelope approximation particularly accurate.

(2.7) Energy Density.

(a) Show that the kinetic energy density uK and the potential energy density uP for a transverse
wave on a string of linear density ρ and at tension T are given by

uK =
1

2
ρ

(
∂y

∂t

)2

and

uP =
1

2
T

(
∂y

∂x

)2

(b) Evaluate these for the wave y = A sin(kx− ωt) where k and ω are such that y satisfies the
wave equation.

(c) Show that uk=uP .
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