
Appendix C
Optical polarization tutorial

C.1 Polarization of light

Consider a classical electromagnetic plane wave propagating along the (horizontal)
z-axis with angular frequency ω and wavenumber k = ω/c, where c is the speed of
light. The electromagnetic wave is transverse, so its electric field vector lies in the
x-y plane:

~E(z, t) = AH îcos(kz−ωt +ϕH)+AV ĵ cos(kz−ωt +ϕV ), (C.1)

or in the complex form

~E(z, t) = Re[(AHeiϕH î+AV eiϕV ĵ)eikz−iωt ]. (C.2)

Here î and ĵ are unit vectors along the x and y axes, respectively; AH and AV are the
real amplitudes of the x and y components (which we will refer to as horizontal and
vertical), and ϕH and ϕV are their phases.

Exercise C.1.§ Show that Eqs. (C.1) and (C.2) are equivalent.

The intensity of light in each polarization is proportional to:

IH ∝ A2
H ; (C.3a)

IV ∝ A2
V . (C.3b)

The total intensity of the wave is the sum of its two components: Itotal ∝ A2
H +A2

V .
Let us study the behavior of the electric field vector at some specific point in

space, say z= 0. If the two components of the field have different phases, ~E(z, t) will
change its direction as a function of time, as illustrated in Fig. C.1. To understand
this interesting phenomenon better, try the following exercise.

Exercise C.2. Plot, as a function of time, the horizontal and vertical components of
~E(0, t) for 0≤ ωt ≤ 2π , in the following cases:

a) AH = 1 V/m, AV = 0, ϕH = ϕV = 0;
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Fig. C.1 Polarization pattern of a plane wave. When the vertical and horizontal components of
the electric field vector oscillate with different phases, the direction of that vector (shown with
thick arrows) does not remain constant in phase and time. The trajectory of the tip of that vector
determines the polarization pattern.

b) AH = 5 V/m, AV =−3 V/m, ϕH = ϕV = 0;
c) AH = 5 V/m, AV =−3 V/m, ϕH = π/2, ϕV = 0;
d) AH = 5 V/m, AV =−3 V/m, ϕH = π/4, ϕV =−π/4;
e) AH = 5 V/m, AV =−3 V/m, ϕH = 0, ϕV = π/6.

For each of the above cases, plot the trajectory of the point (Ex,Ey) for a constant z
as a function of time.

The field vector trajectory defines the so-called polarization state (pattern) of
light. The polarization state is one of the primary parameters of an electromagne-
tic wave; it determines how this field interferes with other waves or interacts with
matter. Importantly, the polarization pattern is conserved as the wave is propagating
through space and time, with the exception of certain materials which we will study
a bit later.

Exercise C.3. Show that the polarization pattern of a plane wave is the same for all
values of z.

This can be restated more generally: adding an arbitrary shift to both phases ϕH
and ϕV will not change the polarization pattern. One can say that the pattern depends
not on the individual phases of its two components, but on their difference ϕH −ϕV
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[see Ex. C.2(c,d) for an example]. This property of classical polarization patterns
has a direct counterpart in the quantum world: applying an overall phase shift to
a quantum state does not change its physical properties (see Sec. 1.3 for a more
detailed discussion).

In general, the polarization pattern is elliptical; however, as we have seen above,
there exist special cases when the ellipse collapses into a straight line or blows out
into a circle. Let us look at these cases more carefully.

Exercise C.4. Show the following:

a) The polarization pattern is linear if and only if ϕH = ϕV +mπ , where m is an
integer, or AH = 0 or AV = 0. The angle θ of the field vector with respect to the
x axis is given by tanθ = AV/AH .

b) The polarization pattern is circular if and only if ϕH = ϕV
π

2 +mπ , where m is
an integer, and AH =±AV .

Important specific cases of linear polarization are horizontal (AV = 0), vertical
(AH = 0), and±45◦ (AV =±AH ). For circular polarization, one can distinguish two
cases according to the helicity of the wave: right and left circular.

• For right circular polarization, AV = AH and ϕV = ϕH + π

2 +2πm or AV =−AH
and ϕV = ϕH − π

2 +2πm, where m is an integer.
• For left circular polarization, AV = AH and ϕV = ϕH − π

2 + 2πm or AV = −AH

and ϕV = ϕH + π

2 +2πm, where m is an integer1.

Exercise C.5.∗ Show that, when none of the conditions of Ex. C.4 are satisfied, the
tip of the electric field vector follows an elliptical pattern.

C.2 Polarizing beam splitter

The polarizing beam splitter (PBS) (Fig. C.2) is an important optical device for
analyzing polarization. It is a transparent cube consisting of two triangular prisms
glued to each other, constructed to transmit horizontally polarized light, but reflect
vertically polarized. If a classical wave (C.2) is incident on such a beam splitter, the
intensities of the transmitted and reflected light will be proportional to A2

H and A2
V ,

respectively.

1 Defining what circular polarization pattern should be called “left” or “right” is a matter of con-
vention. Here we follow the convention that is common in the quantum optics community. In the
right-circular pattern, the trajectory of the electric field vector is clockwise when viewed from
the “back” of the wave (from the source). However, it is counterclockwise when viewed from the
“front”, or in the x-y plane with the traditional axis orientation. In space, this trajectory has the
shape of a left-handed screw.
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Fig. C.2 Polarizing beam splitter.

C.3 Waveplates

It is sometimes necessary to change the polarization state of light without splitting
the vertical and horizontal components spatially. This is normally achieved using
an optical instrument called a waveplate. The waveplate relies on birefringence,
or double refraction — an optical property displayed by certain materials, prima-
rily crystals, for example quartz or calcite. Birefringent crystals have an anisotropic
structure, such that a light wave propagating through them will not conserve its pola-
rization pattern unless it is linearly polarized along one of the two directions: either
along or perpendicular to the crystal’s optic axis. Traditionally, these directions are
referred to as extraordinary and ordinary, respectively.

A birefringent material exhibits different indices of refraction for these two pola-
rizations. Therefore, after propagation through the crystal, the ordinary and extraor-
dinary waves will acquire different phases: ∆ϕe and ∆ϕo, respectively. Because an
overall phase shift has no effect on the polarization pattern, the quantity of interest
is the difference δϕ = ∆ϕe−∆ϕo.

Exercise C.6. The indices of refraction for light polarized along and perpendicular
to the optic axis are ne and no, respectively, the length of the crystal is L, and the
wavelength in vacuum is λ . Find δϕ .

A waveplate is a birefringent crystal of a certain length, so ∆ϕ is precisely
known. Two kinds of waveplates are manufactured commercially: λ/2-plate (half-
wave plate) with δϕ = π and λ/4-plate (quarter-wave plate) with δϕ = π/2.

If the polarization pattern is not strictly ordinary or extraordinary, propagation
through a birefringent crystal will transform it. In order to determine this transfor-
mation, we decompose the wave into the extraordinary and ordinary components.
The phase shift of each component is known. Knowing the new phases of both com-
ponents, we can combine them to find the new polarization pattern.

Exercise C.7. For each of the polarization states of Ex. C.2, plot the polarization
patterns that the waves will acquire when they propagate through (a) a half-wave
plate, (b) a quarter-wave plate with the optical axes oriented vertically.

Solving the above exercise, you may have noticed that the half-wave plate “flips”
the polarization pattern around the vertical (or horizontal) axis akin to a mirror.
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Fig. C.3 Action of a λ/2-plate with optic axis oriented vertically. Different refractive indices for
the ordinary and extraordinary polarizations result in different optical path lengths, thereby rotating
the polarization axis.

This is not surprising: the phase shift of π in the vertical component is equivalent
to multiplication of AV by −1. Of course, this mirroring property applies, not only
when the optic axis is oriented vertically, but for any orientation, making the half-
wave plate a universal tool for rotating the polarization of an electromagnetic field.
Specifically, a light wave that is linearly polarized at angle θ to the horizontal, after
propagating through a half-wave plate with its optic axis oriented at angle α to the
horizontal, will transform into a linearly polarized wave at angle 2α−θ (Fig. C.4).

Fig. C.4 Polarization rotation by a λ/2 plate.
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Exercise C.8.§ Show that a λ/2-plate with the optic axis oriented at 22.5◦ to the
horizontal interconverts between the horizontal and 45◦ polarizations, as well as
between the vertical and −45◦ polarizations.

However, rotations alone do not provide a full set of possible transformations. For
example, half-wave plates cannot transform between linear and circular/elliptical
patterns. To accomplish this, we would need a quarter-wave plate.

Exercise C.9. Show that a λ/4-plate with the optic axis oriented horizontally or
vertically interconverts between the circular and ±45◦ polarizations.

Exercise C.10. Linearly polarized light at angle θ to the horizontal propagates
through a λ/4-plate with the optic axis oriented vertically. For the resulting ellipti-
cal pattern, find the angle between the major axis and the horizontal and the ratio of
the minor to major axes.

Exercise C.11.∗ Suppose you have a source of horizontally polarized light. Show
that, by using one half-wave plate and one quarter-wave plate, you can obtain light
with an arbitrary polarization pattern.
Hint: It is easier to tackle this problem using geometric arguments, particularly the
result of Ex. C.5, rather than formal algebra.

Exercise C.12.∗ Linearly polarized light propagates through a half-wave plate, then
through a quarter-wave plate at angle 45◦ to the horizontal, then through a polarizing
beam splitter. Show that the transmitted intensity does not depend on the angle of
the half-wave plate.




